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Abstract

The purpose of the paper is to study the uniqueness problems of
linear differential polynomials of meromorphic functions sharing a
small function with finite weight and we obtain some results which
improve and generalize the related results due to J. L. Zhang and
L. Z. Yang [12]. Here, examples have also been given in support
of the existence of the result and the sharpness of the conditions
invoved in it.
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1 Introduction

In this article, we use some basic results and symbols of Nevanlinna theory like
characteristic function T (r, f), proximity function m(r, f), counting function
N(r, f), reduced counting function N(r, f), and the first and second theorems
(see [1],[6]). We denote by S(r, f) any quantity satisfying S(r, f) = o{T (r, f)}
as r →∞, possibly outside a set of finite linear measure.
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The order of f is defined by

λ(f) = lim
r→∞

sup
log T (r, f)

log r
.

Let k ∈ N and a ∈ C ∪ {∞}. We use N(k(r, a; f) to denote the count-
ing function of a-points of f with multiplicity ≥ k, Nk)(r, a; f) to denote the
counting function of a-points of f with multiplicity ≤ k. Similarly N (k(r, a; f)
and Nk)(r, a; f) are their reduced functions respectively.

For a ∈ C ∪ {∞} and p ∈ N we denote by Np(r, a; f) the sum

N(r, a; f) +N (2(r, a; f) + ...+N (p(r, a; f).

Clearly N1(r, a; f) = N(r, a; f).

For a ∈ C ∪ {∞} and p ∈ N we put

δp(a; f) = 1− lim
r→∞

sup
Np(r, a; f)

T (r, f)
.

Clearly,

0 ≤ δ(a; f) ≤ δp(a; f) ≤ δp−1(a; f) ≤ ... ≤ δ2(a; f) ≤ δ1(a; f) = Θ(a; f).

In 2003, Kit-Wing Yu [10] considered the case that a is a small function, and
obtained the following results.

Theorem A. Let f be a non-constant entire function, let k be a positive
integer, and let a be a small meromorphic function of f such that a(z) 6≡ 0,∞.
If f − a and f (k) − a share the value 0 CM and δ(0, f) > 3

4
, then f ≡ f (k).

Theorem B. Let f be a non-constant, non-entire meromorphic function, let
k be a positive integer, and let a be a small meromorphic function of f such
that a(z) 6≡ 0,∞. If f and a do not have any common pole, and if f − a and
f (k)− a share the value 0 CM and 4δ(0, f) + 2(8 + k)Θ(∞, f) > 19 + 2k, then
f ≡ f (k).

In 2004, Liu and Gu [5] obtained the following results.

Theorem C. Let k ≥ 1 and let f be a non-constant meromorphic function,
and let a be a small meromorphic function of f such that a(z) 6≡ 0,∞. If f −a
and f (k) − a share the value 0 CM, f (k) and a do not have any common poles
of the same multiplicities and 2δ(0, f) + 4Θ(∞, f) > 5, then f ≡ f (k).

Theorem D. Let k ≥ 1 and let f be a non-constant entire function, and let
a be a small meromorphic function of f such that a(z) 6≡ 0,∞. If f − a and
f (k) − a share the value 0 CM and δ(0, f) > 1

2
, then f ≡ f (k).

Lahiri [3] improved Theorem C with weighted shared values and obtained the
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following theorem.

Theorem E. Let f be a non-constant meromorphic function, k be a positive
integer, and let a ≡ a(z) be a small meromorphic function of f such that
a(z) 6≡ 0,∞. If

(i) a(z) has no zero (pole) which is also a zero (pole) of f or f (k) with the
same multiplicity,

(ii) f − a and f (k) − a share (0, 2),

(iii) 2δ2+k(0, f) + (4 + k)Θ(∞, f) > 5 + k,

then f ≡ f (k).

In 2005, Zhang [11] obtained the following result which is an improvement and
complement of Theorem D.

Theorem F. Let f be a non-constant meromorphic function, k (≥ 1) and
l (≥ 0) be integers. Also, let a ≡ a(z) be a small meromorphic function of
f such that a(z) 6≡ 0,∞. Suppose that f − a and f (k) − a share (0, l). Then
f ≡ f (k) if one of the following conditions is satisfied,

(i) l ≥ 2 and

(3 + k)Θ(∞, f) + 2δ2+k(0, f) > k + 4;

(ii) l = 1 and

(4 + k)Θ(∞, f) + 3δ2+k(0, f) > k + 6;

(iii) l = 0 (i.e., f − a and f (k) − a share the value 0 IM) and

(6 + 2k)Θ(∞, f) + 5δ2+k(0, f) > 2k + 10.

It is natural to ask what happens if f (k) is replaced by a differential polynomial

L(f) = f (k) + ak−1f
(k−1) + ...+ a0f

in Theorem E or F, where aj (j = 0, 1, ..., k− 1) are small meromorphic func-
tions of f . Corresponding to this question,in 2007 Zhang and Yang [12] ob-
tained the following results.

Theorem G. Let f be a non-constant meromorphic function, k (≥ 1) and
l (≥ 0) be integers. Also, let a = a(z) be a small meromorphic function of f
such that a(z) 6≡ 0,∞. Suppose that f − a and L(f) − a share (0, l). Then
f ≡ L(f) if one of the following assumptions holds,
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(i) l ≥ 2 and

δ2+k(0, f) + δ2(0, f) + 3Θ(∞, f) + δ(a, f) > 4;

(ii) l = 1 and

δ2+k(0, f) + δ2(0, f) +
1

2
δ1+k(0, f) +

k + 7

2
Θ(∞, f) + δ(a, f) >

k

2
+ 5;

(iii) l = 0 (i.e., f − a and L(f)− a share the value 0 IM) and

δ2+k(0, f)+2δ1+k(0, f)+δ2(0, f)+Θ(0, f)+(6+2k)Θ(∞, f)+δ(a, f) > 2k+10.

We now explain the notation of weighted sharing as introduced in [2].

Definition 1.1 ([2]). Let k ∈ N ∪ {0} ∪ {∞}. For a ∈ C ∪ {∞} we denote
by Ek(a; f) the set of all a-points of f , where an a-point of multiplicity m is
counted m times if m ≤ k and k+ 1 times if m > k. If Ek(a; f) = Ek(a, g), we
say that f, g share the value a with the weight k.

We write f, g share (a, k) to mean that f, g share the value a with the
weight k. Clearly, if f, g share (a, k), then f, g share (a, p) for any integer
p, 0 ≤ p < k. Also we note that f, g share a value a IM or CM if and only if
f, g share (a, 0) or (a,∞), respectively. Let h be a non-constant meromorphic

function. We denote by

P1(h) = h(k) + a1h
(k−1) + a2h

(k−2) + ...+ ak−1h
′
+ akh (1)

and

P2(h) = h(k) + b1h
(k−1) + b2h

(k−2) + ...+ bk−1h
′

(2)

the differential polynomials of h, where a1, a2, ..., ak (6= 0), b1, b2, ..., bk−1 are
finite complex numbers with (b1, b2, ..., bk−1) 6= (0, 0, ..., 0) and k is a positive
integer.

The main purpose of this paper is to improve and generalize Theorem G.
Further in this paper we provide some examples to show that the conditions
in our results are the best possible.

2 Main Results

To prove our main results, we need the following lemma.
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Lemma 1 ([7]). Let f be a non-constant meromorphic function. Then

N

(
r,

1

f (k)

)
≤ T (r, f (k))− T (r, f) +N

(
r,

1

f

)
+ S(r, f), (3)

N

(
r,

1

f (k)

)
≤ N

(
r,

1

f

)
+ kN(r, f) + S(r, f). (4)

Suppose that F and G are two non-constant meromorphic functions such that
F and G share the value 1 IM. Let z0 be a 1-point of F of order p, a 1-point of
G of order q. We denote by NL

(
r, 1

F−1

)
the counting function of those 1-points

of F where p > q, by N
1)
E

(
r, 1

F−1

)
the counting function of those 1-points of F

where p = q = 1, by N
(2
E

(
r, 1

F−1

)
the counting function of those 1-points of F

where p = q ≥ 2; each point in these counting functions is counted only once.
In the same way, we can define NL

(
r, 1

G−1

)
N

1)
E

(
r, 1

G−1

)
N

(2
E

(
r, 1

G−1

)
(see [9]).

In particular, if F and G share 1 CM, then

NL

(
r,

1

F − 1

)
= NL

(
r,

1

G− 1

)
= 0. (5)

With these notations, if F and G share 1 IM, it is easy to see that

N

(
r,

1

F − 1

)
= N

1)
E

(
r,

1

G− 1

)
+NL

(
r,

1

F − 1

)
+NL

(
r,

1

G− 1

)
+N

(2
E

(
r,

1

G− 1

)
= N

(
r,

1

G− 1

) (6)

Lemma 2 ([8]). Let

H =

(
F
′′

F ′
− 2F

′

F − 1

)
−
(
G
′′

G′
− 2G

′

G− 1

)
, (7)

where F and G are two nonconstant meromorphic functions. If F and G share
1 IM and H 6≡ 0, then

N
1)
E

(
r,

1

F − 1

)
≤ N(r,H) + S(r, F ) + S(r,G). (8)

Lemma 3 ([12]). Let f be a non-constant meromorphic function, P (f) be
defined by (1.1) and p, k be positive integers. If P (f) 6≡ 0, we have

Np(r, 0;P (f)) ≤ T (r, P (f))− T (r, f) +Np+k(r, 0; f) + S(r, f),
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Np(r, 0;P (f)) ≤ kN(r,∞; f) +Np+k(r, 0; f) + S(r, f).

The following theorems are the main results of the paper.

Theorem 1. Let f and g be two non-constant meromorphic functions, k (≥ 1)
and l (≥ 0) be integers. Also, let a = a(z) (6≡ 0,∞) be a small function with
respect to f and g. Suppose that P1(f) − a and P1(g) − a share (0, l). If one
of the following assumptions holds,

(i) l ≥ 2 and
(3 + k)Θ(∞, f) + 2δ2+k(0, f) > 4 + k, (9)

(ii) l = 1 and (
7 + 3k

2

)
Θ(∞, f) +

5

2
δ2+k(0, f) >

3k

2
+ 5, (10)

(iii) l = 0 (i.e., P1(f)− a and P1(g)− a share the value 0 IM) and

(6 + 4k)Θ(∞, f) + 5δ2+k(0, f) > 4k + 10. (11)

Then P1(f) ≡ P1(g) unless P1(f)P1(g) ≡ a2.

Proof. Let

F =
P1(f)

a
, G =

P1(g)

a
. (12)

From the conditions of Theorem 1, we know that F and G share (1, l) except
the zeros and poles of a(z). From (12), we have

T (r, F ) = O(T (r, f)) + S(r, f), T (r,G) = O(T (r, f)) + S(r, f), (13)

N(r, F ) = N(r,G) + S(r, f). (14)

It is obvious that f is a transcendental meromorphic function. Let H be
defined by (7). We discuss the following two cases.

Case 1. H 6≡ 0, by Lemma 2 we know that (8) holds. From (7) and (14), we
have

N(r,H) ≤ N (2

(
r,

1

F

)
+N (2

(
r,

1

G

)
+N(r,G) +NL

(
r,

1

F − 1

)
+NL

(
r,

1

G− 1

)
+N0

(
r,

1

F ′

)
+N0

(
r,

1

G′

)
,

(15)

where N0

(
r, 1

F ′

)
denotes the counting function corresponding to the zeros of

F
′

which are not the zeros of F and F − 1. N0

(
r, 1

G′

)
denotes the counting
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function corresponding to the zeros of G
′

which are not the zeros of G and
G−1. From the second fundamental theorem in Nevanlinna’s Theory, we have

T (r, F ) + T (r,G) ≤ N

(
r,

1

F

)
+N(r, F ) +N

(
r,

1

F − 1

)
+N

(
r,

1

G

)
+N(r,G) +N

(
r,

1

G− 1

)
−N0

(
r,

1

F ′

)
−N0

(
r,

1

G′

)
+ S(r, f).

(16)

Noting that F and G share 1 IM except the zeros and poles of a(z), we get
from (6),

N

(
r,

1

F − 1

)
+N

(
r,

1

G− 1

)
= 2N

1)
E

(
r,

1

F − 1

)
+ 2NL

(
r,

1

F − 1

)
+ 2NL

(
r,

1

G− 1

)
+ 2N

(2
E

(
r,

1

G− 1

)
+ S(r, f).

Combining with (8) and (15), we obtain

N

(
r,

1

F − 1

)
+N

(
r,

1

G− 1

)
≤ N(2

(
r,

1

F

)
+N(2

(
r,

1

G

)
+N(r,G)

+ 3NL

(
r,

1

F − 1

)
+ 3NL

(
r,

1

G− 1

)
+N

1)
E

(
r,

1

F − 1

)
+ 2N

(2
E

(
r,

1

G− 1

)
+N0

(
r,

1

F ′

)
+N0

(
r,

1

G′

)
+ S(r, f).

(17)

We discuss the following three subcases.

Subcase 1.1. l ≥ 2. It is easy to see that

3NL

(
r,

1

F − 1

)
+ 3NL

(
r,

1

G− 1

)
+ 2N

(2
E

(
r,

1

G− 1

)
+N

1)
E

(
r,

1

F − 1

)
≤ N

(
r,

1

G− 1

)
+ S(r, f).

(18)
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From (17) and (18), we have

N

(
r,

1

F − 1

)
+N

(
r,

1

G− 1

)
≤ N(2

(
r,

1

F

)
+N(2

(
r,

1

G

)
+N(r,G)

+N

(
r,

1

G− 1

)
+N0

(
r,

1

F ′

)
+N0

(
r,

1

G′

)
+ S(r, f).

(19)

Substituting (19) into (16) and by using (14), we have

T (r, F ) ≤ 3N(r,G) +N2

(
r,

1

F

)
+N2

(
r,

1

G

)
+ S(r, f).

Now applying Lemma 3 we have

T (r, f) ≤ T (r, F ) +Nk+2

(
r,

1

F

)
−N2

(
r,

1

F

)
+ S(r, f) + S(r, g)

≤ 3N(r, f) +N2

(
r,

1

G

)
+Nk+2

(
r,

1

f

)
+ S(r, f) + S(r, g)

≤ (3 + k)N(r, f) +Nk+2

(
r,

1

g

)
+Nk+2

(
r,

1

f

)
+ S(r, f) + S(r, g)

≤ (3 + k)N(r, f) + 2Nk+2

(
r,

1

f

)
+ S(r, f) + S(r, g)

≤ ((3 + k)− (3 + k)Θ(∞, f) + 2− 2δk+2(0, f) + ε)T (r, f) + S(r, f)

+ S(r, g)

≤ ((3 + k)− (3 + k)Θ(∞, f) + 2− 2δk+2(0, f) + ε)T (r) + S(r),

i.e.,

T (r, f) ≤ ((3 + k)− (3 + k)Θ(∞, f) + 2− 2δk+2(0, f) + ε)T (r) + S(r).
(20)

Similarly we have

T (r, g) ≤ ((3 + k)− (3 + k)Θ(∞, f) + 2− 2δk+2(0, f) + ε)T (r) + S(r).
(21)

Combining (20) and (21) we get

(−4− k + (3 + k)Θ(∞, f) + 2δk+2(0, f)− ε)T (r) ≤ S(r).
(22)
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Since ε > 0 is arbitrary, we see that (22) leads to a contradiction.

Subcase 1.2. l = 1. Noting that

2NL

(
r,

1

F − 1

)
+ 3NL

(
r,

1

G− 1

)
+ 2N

(2
E

(
r,

1

G− 1

)
+N

1)
E

(
r,

1

F − 1

)
≤ N

(
r,

1

G− 1

)
+ S(r, f),

NL

(
r,

1

F − 1

)
≤ 1

2
N

(
r,
F

F ′

)
≤ 1

2
N

(
r,
F
′

F

)
≤ 1

2

(
N

(
r,

1

F

)
+N(r, F )

)
+ S(r, f)

≤ 1

2

(
N1

(
r,

1

F

)
+N(r, f)

)
+ S(r, f)

≤ 1

2

(
Nk+1

(
r,

1

f

)
+ (k + 1)N(r, f)

)
+ S(r, f),

and by the same reasoning as in Subcase 1.1, we get

T (r, F ) ≤ N2

(
r,

1

F

)
+N2

(
r,

1

G

)
+ 3N(r, f) +

1

2

(
Nk+1

(
r,

1

f

)
+ (k + 1)N(r, f)

)
+ S(r, f) + S(r, g).

T (r, f) ≤ T (r, F ) +Nk+2

(
r,

1

F

)
−N2

(
r,

1

F

)
+ S(r, f) + S(r, g)

≤ N2

(
r,

1

G

)
+ 3N(r, f) +Nk+2

(
r,

1

f

)
+

1

2

(
Nk+1

(
r,

1

f

)
+ (k + 1)N(r, f)

)
+ S(r, f) + S(r, g)

≤ (3 + k)N(r, f) +Nk+2

(
r,

1

g

)
+Nk+2

(
r,

1

f

)
+

1

2
Nk+1

(
r,

1

f

)
+

(
k + 1

2

)
N(r, f) + S(r, f) + S(r, g)

≤
(

7 + 3k

2

)
N(r, f) +

5

2
Nk+2

(
r,

1

f

)
+ S(r, f) + S(r, g)

≤
((

7 + 3k

2

)
−
(

7 + 3k

2

)
Θ(∞, f) +

5

2
− 5

2
δk+2(0, f) + ε

)
T (r) + S(r),

i.e.,

T (r, f) ≤
((

7 + 3k

2

)
−
(

7 + 3k

2

)
Θ(∞, f) +

5

2
− 5

2
δk+2(0, f) + ε

)
T (r) + S(r).

(23)
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Similarly we have

T (r, g) ≤
((

7 + 3k

2

)
−
(

7 + 3k

2

)
Θ(∞, f) +

5

2
− 5

2
δk+2(0, f) + ε

)
T (r) + S(r).

(24)

Combining (23) and (24) we get(
−3k

2
− 5 +

(
7 + 3k

2

)
Θ(∞, f) +

5

2
δk+2(0, f)− ε

)
T (r) ≤ S(r).

(25)

Since ε > 0 is arbitrary, we see that (25) leads to a contradiction.

Subcase 1.3. l = 0. Noting that

NL

(
r,

1

F − 1

)
+ 2NL

(
r,

1

G− 1

)
+ 2N

(2
E

(
r,

1

G− 1

)
+N

1)
E

(
r,

1

F − 1

)
≤ N

(
r,

1

G− 1

)
+ S(r, f),

2NL

(
r,

1

F − 1

)
+NL

(
r,

1

G− 1

)
≤ 2N

(
r,

1

F ′

)
+N

(
r,

1

G′

)
,

and by the same reasoning as in the Subcase 1.2, we get

T (r, F ) ≤ N2

(
r,

1

F

)
+N2

(
r,

1

G

)
+ 3N(r, f) + 2N

(
r,

1

F ′

)
+N

(
r,

1

G′

)
+ S(r, f) + S(r, g).

Now applying Lemma 3 we have

T (r, f) ≤ T (r, F ) +Nk+2

(
r,

1

F

)
−N2

(
r,

1

F

)
+ S(r, f) + S(r, g)

≤ N2

(
r,

1

G

)
+ 3N(r, f) + 2N

(
r,

1

F ′

)
+N

(
r,

1

G′

)
+Nk+2

(
r,

1

f

)
+ S(r, f) + S(r, g)

≤ (3 + k)N(r, f) +Nk+2

(
r,

1

g

)
+Nk+2

(
r,

1

f

)
+ 2

[
N1

(
r,

1

P1(f)

)
+N(r, f)

]
+N1

(
r,

1

P1(g)

)
+N(r, g)

+ S(r, f) + S(r, g)

≤ (6 + k)N(r, f) + 2Nk+2

(
r,

1

f

)
+ 2Nk+1

(
r,

1

f

)
+ 2kN(r, f)
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+Nk+1

(
r,

1

g

)
+ kN(r, g) + S(r, f) + S(r, g)

≤ (6 + 4k)N(r, f) + 5Nk+2

(
r,

1

f

)
+ S(r, f) + S(r, g)

≤ ((6 + 4k)− (6 + 4k)Θ(∞, f) + 5− 5δk+2(0, f) + ε)T (r) + S(r),

i.e.,

T (r, f) ≤ ((6 + 4k)− (6 + 4k)Θ(∞, f) + 5− 5δk+2(0, f) + ε)T (r) + S(r).
(26)

Similarly we have

T (r, g) ≤ ((6 + 4k)− (6 + 4k)Θ(∞, f) + 5− 5δk+2(0, f) + ε)T (r) + S(r).
(27)

Combining (26) and (27) we get

(−4k − 10 + (6 + 4k)Θ(∞, f) + 5δk+2(0, f)− ε)T (r) ≤ S(r).
(28)

Since ε > 0 is arbitrary, we see that (28) leads to a contradiction.

Case 2. H ≡ 0. By integration, we get from (7) that

1

G− 1
=

A

F − 1
+B, (29)

where A (6= 0) and B are constants, from (29) we have

N(r, F ) = N(r,G) = N(r, f) = S(r, f), Θ(∞, f) = 1, (30)

and

G =
(B + 1)F + (A−B − 1)

BF + (A−B)
, F =

(B − A)G+ (A−B − 1)

BG− (B + 1)
. (31)

We discuss the following three subcases.

Subcase 2.1. Suppose that B 6= 0,−1. From (31) we have N

(
r, 1

(G−B+1
B )

)
=

N(r, F ). From this and the second fundamental theorem, we have

T (r,G) ≤ N(r,G) +N

(
r,

1

G

)
+N

(
r,

1(
G− B+1

B

))+ S(r, f)

≤ N

(
r,

1

G

)
+N(r, F ) +N(r,G) + S(r, f)

≤ T (r,G)− T (r, g) +Nk+1

(
r,

1

g

)
+ S(r, f).
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T (r, f) ≤ Nk+1

(
r,

1

f

)
+ S(r, f).

Which contradicts the assumptions of Theorem 1.

Subcase 2.2. Suppose that B = 0. From (31) we have

G =
F + (A− 1)

A
, F = AG− (A− 1). (32)

If A 6= 1, from (32) we can obtain N

(
r, 1

(G−A−1
A )

)
= N

(
r, 1

F

)
. Similarly we

can again deduce a contradiction as in Subcase 2.1.

If A = 1, then F ≡ G, that is

P1(f) ≡ P1(g). (33)

Subcase 2.3. Suppose that B = −1, from (31) we have

G =
A

−F + (A+ 1)
, F =

(A+ 1)G− A
G

. (34)

If A 6= −1, we obtain from (34) that N

(
r, 1

(G− A
A+1)

)
= N

(
r, 1

F

)
. Similarly,

we can deduce a contradiction as in Subcase 2.1.

Hence A = −1. From (34), we get F.G ≡ 1, that is

P1(f)P1(g) ≡ a2.

This completes the proof.

Example 1. Let

f(z) = ez
(

1− 1

2
ez
)

and g(z) = e−z
(

1

2
− e−z

)
.

Then

P1(f) = −3

8

(
f (iv) +

2

3
f
′′′ − 5f

′′ − 2f
′
+ 8f

)
= ez(1− ez)

and

P1(g) = −3

8

(
g(iv) +

2

3
g
′′′ − 5g

′′ − 2g
′
+ 8g

)
= e−z(1− e−z).

Since N(r, f) = S(r, f), Θ(∞, f) = 1 and
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N

(
r,

1

f

)
= N

(
r,

1

ez(1− 1
2
ez)

)
= Nk+2

(
r,

1

f

)
∼ 1

2
T (r, f),

δk+2(0, f) = 1
2
. Also we know that P1(f) and P1(g) share (a, l) (l ≥ 0), but none

of the inequalities (9), (10) and (11) are satisfied and neither P1(f) ≡ P1(g)
nor P1(f)P1(g) ≡ 1. Therefore the conditions of Theorem 1 are essential.

Theorem 2. Let f and g be two non-constant meromorphic functions, k (≥ 1)
and l (≥ 0) be integers. Also, let a = a(z) (6≡ 0,∞) be a small function with
respect to f and g. Suppose that P2(f) − a and P2(g) − a share (0, l). If one
of the following assumptions holds,

(i) l ≥ 2 and
(3 + k)Θ(∞, f) + 2δ2+k(0, f) > 4 + k, (35)

(ii) l = 1 and (
7 + 3k

2

)
Θ(∞, f) +

5

2
δ2+k(0, f) >

3k

2
+ 5, (36)

(iii) l = 0 (i.e., P2(f)− a and P2(g)− a share the value 0 IM) and

(6 + 4k)Θ(∞, f) + 5δ2+k(0, f) > 4k + 10. (37)

Then P2(f) ≡ P2(g) unless P2(f)P2(g) ≡ a2.

Proof. The proof of Theorem follows from the proof of Theorem 1. So we
omit the detailed proofs.

Example 2. Let

f(z) = ez
(

1− 1

2
ez
)

and g(z) = e−z
(

1

2
− e−z

)
.

Then

P2(f) = −3

8

(
f (iv) − 2

3
f
′′′ − 5f

′′
+ 2f

′
)

= ez(1− ez)

and

P2(g) = −3

8

(
g(iv) − 2

3
g
′′′ − 5g

′′
+ 2g

′
)

= e−z(1− e−z).

Since N(r, f) = S(r, f), Θ(∞, f) = 1 and

N

(
r,

1

f

)
= N

(
r,

1

ez(1− 1
2
ez)

)
= Nk+2

(
r,

1

f

)
∼ 1

2
T (r, f),



14 HARINA P. WAGHAMORE AND RAMYA MALIGI

δk+2(0, f) = 1
2
. Also we know that P2(f) and P2(g) share (a, l) (l ≥ 0), but none

of the inequalities (35), (36) and (37) are satisfied and neither P2(f) ≡ P2(g)
nor P2(f)P2(g) ≡ 1. Therefore, the conditions of Theorem 2 are essential.

3 Open Problems

1. Is it possible to replace the non-constant meromorphic functions by non-
constant entire functions?.

2. Whether it is possible to replace the sharing value small function a(z) by a
polynomial p(z)?.
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