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Abstract

We consider the partial operators on K = [0,+∞[×R
D1 =

∂

∂θ

D2 =
∂2

∂y2
+ ((2α + 1) coth y + tanh y)

∂

∂y
− 1

cosh2 y

∂2

∂θ2
+ (α + 1)2,

where α ∈ R ,α ≥ 0.
For α = n − 2, n ∈ N, n ≥ 2, the operators D1 and D2 − (α + 1)2 are
used to study a harmonic analysis associated to Harish-Chandra’s
spherical functions ou Riemannian symmetric spaces.(see [4]p.72)

In this paper we give first harmonic analysis associated with the
operators D1, D2 (see [5]), next we define the wavelets and the
generalized windowed transform and we prove for this transform
Plancherel and inversion formulas.

Keywords: Partial differential operators; Wavelets; Generalized windowed
transform.
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Introduction

Let g be a non negligeable square integrable function on R2 with respect to
the Lebesgue measure. The classical windowed transform Ψg is a transform
which replace the usual Fourier transform on R2 of a function f is given by:

Ψg(f)(λ, y) =

∫
R2

f(x)gλ,y(x)dx, λ, y ∈ R2.

This transform is the product of the analyzed function f by the function
gλ,y called the classical wavelet defined by

gλ,y(x) = e−i<λ,x>
τxg(y)

||τxg||2
,

with τx the classical translation operator defined for x ∈ R2, by

τxg(y) = g(x− y), y ∈ R2

The function g is called windowed function.
We prove for the transform Ψg Plancherel and inversion formulas.

In this paper, we introduce first the harmonic analysis associated with the
operators D1, D2 (generalized Fourier transform, generalized Paley-Wiener
transform, generalized Plancherel theorem, generalized translation operator
T(y,θ), (y, θ) ∈ K, and generalized convolution product)(see[4]).

Next, we consider a non negligeable function g onK, and its translate T(y,θ)g
and we study first the properties of its L2-norm ||T(y,θ)g||α,2 with respect to
the measure

Aα(y)dydθ = 22(α+1)(sinh y)2α+1 cosh ydydθ, (y, θ) ∈ K.

and we prove for all (y, θ) ∈ K that the function ||T(y,θ)g||α,2 is different from
zero.
We define the wavelet gs(λ,µ),(y,θ) associated with the operators D1, D2 given by

gs(λ,µ),(y,θ)(x, τ) = ϕλ,µ(x, τ)
T(y,θ)g(x, τ)

||T(x,τ)g||sα,2
.

By using these wavelet we define the family of generalized windowed trans-
form, Φs

g(f),
s ∈ R, associated, with the operators D1, D2 given for regular functions f on
K by
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Φs
g(f)((λ, µ), (y, θ)) =

∫
K
f(x, τ)(gs(λ,µ),(y,θ))

∗(x, τ)Aα(x)dxdτ, (λ, µ), (y, θ) ∈ K,

where

∀(x, τ) ∈ K, (gs(λ,µ),(y,θ))
∗(x, τ) = gs(λ,µ),(y,θ)(x,−τ),

and we prove for this transform Plancherel and inversion formulas.
The contents of the paper is as follows:

In the first section we give the main results concerning the harmonic anal-
ysis associated with the operators D1, D2.
We study in the second section the generalized translation operator associated
with the operators D1, D2.
The third section we define and study the Wavelets associated with the oper-
ators D1, D2

In the fourth section is devoted to an example of wavelets associated with the
operators D1, D2 .
In the last section we give the generalized windowed transform associated with
the operators D1, D2.

As example we give the Gaussian wavelets and the Gaussian windowed
transform associated with the operators D1, D2.

1 Harmonic analysis associated with the op-

erators D1, D2

Notations. We denote by
- E∗(R2) ( resp. D∗(R2) ) the space of C∞-functions on R2 even with respect
to the first variable ( resp. with compact support even with respect to the first
variable).
- S∗(R2) the Schwartz space of functions on R2 even with respect to the first
variable.
- Γ = {(λ, µ) ∈ R× C/|Imµ| ≤ α + 1} ∪ {(λ, µ) ∈ R× C/µ = iη,

η ≥ −(α + 1), λ = ±(α + 2m +
1 + η),m ∈ N}.
We provide these spaces with the classical topologies.

We consider the following system of partial differential operators defined
by
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
D1 =

∂

∂θ
.

D2 =
∂2

∂y2
+ ((2α + 1) coth y + tanh y)

∂

∂y
− 1

cosh2 y

∂2

∂θ2
+ (α + 1)2.

(1.1)

where (y, θ) ∈ [0,+∞[×R and α ∈ R ,α ≥ 0
We denote by ϕλ,µ(y, θ) the is the unique solution of the system

D1U = iλU, λ ∈ C;
D2U = −µ2U, µ ∈ C;

U(0, 0) = 1,
∂U

∂y
(0, θ) = 0 ∀θ ∈]0,+∞[.

(1.2)

Proposition 1.1 For every (λ, µ) ∈ C× C the unique solution of the system
(1.2) is defined by

ϕλ,µ(y, θ) = eiλθ(cosh y)λϕ(α,λ)
µ (y) = eiλθ(cosh y)−λϕ(α,−λ)

µ (y) (1.3)

where ϕ
(α,λ)
µ is the Jacobi function defined by

ϕ(α,λ)
µ (y) =2 F1(

α + λ+ 1 + iµ

2
,
α + λ+ 1− iµ

2
, α + 1;− sinh2 y).

2F1 denotes the hypergeometric function (See [6])

Corollary 1.1 1. For all (y, θ) ∈ K, we have

∀(λ, µ) ∈ Γ, |ϕλ,µ(y, θ)| ≤ 1. (1.4)

2. For all (y, θ) ∈ K, the function (λ, µ) → ϕλ,µ(y, θ) is analytic function
on C2 .

3. For all (y, θ) ∈ K, λ ∈ C, the function µ → ϕλ,µ(y, θ) is even satisfies
the relation

ϕλ,µ(y, θ) = ϕ−λ,µ(y, θ). (1.5)

4. For all (λ, µ) ∈ C×C, the function (y, θ)→ ϕλ,µ(y, θ) is a C∞- function
on K .
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Proposition 1.2 The function ϕλ,µ, (λ, µ) ∈ C × C, satisfies the following
product formula

1. If α > 0 then for all (y, θ), (x, τ) ∈ K,

ϕλ,µ(y, θ)ϕλ,µ(x, τ) =
α

π

∫
D

ϕλ,µ[cosh y coshxei(θ+τ)+sinh y sinhxξ]×(1−|ξ|2)α−1dm(ξ)

(1.6)
where D is the unit disk of C of center o and dm(ξ1 + iξ2) = dξ1dξ2

2. If α = 0 then for all (y, θ), (x, τ) ∈ K

ϕλ,µ(y, θ)ϕλ,µ(x, τ) =
1

2π

∫ 2π

0

ϕλ,µ[cosh y coshxei(θ+τ)+sinh y sinhxeiψ]dψ.

(1.7)

1.1 The Fourier transform associated with the opera-
tors D1, D2

Notations. We denote by:
- C∗(R2) the space of continuous functions on R2 even with respect to the first
variable .
- LpAα(K), 1 ≤ p ≤ +∞, the space of measurable functions on K such that

||f ||α,p = (

∫
K
|f(y, θ)|pAα(y)dydθ)

1
p < +∞, if 1 ≤ p < +∞,

where Aα is the function defined by:

∀y ∈ [0,+∞[, Aα(y) = 22(α+1)(sinh y)2α+1 cosh y. (1.8)

and

||f ||α,∞ = ess sup(y,θ)∈K|f(y, θ)| < +∞, if p = +∞.

- C̃ = {(λ, µ) ∈ C× C/λ ∈ R, µ ≥ 0}
- D̃ = {(λ, µ) ∈ C × C/λ ∈ R,−iµ = η > 0, C1(λ,−µ) = 0} = {(λ, µ) ∈
R× C/µ = iη,

η ≥ −(α + 1), λ = ±(α + 2m + 1 +
η),m ∈ N}
and

C1(λ, µ) =
2α−iµ+1Γ(iµ)Γ(α + 1)

Γ(
α + λ+ 1 + iµ

2
)Γ(

α− λ+ 1 + iµ

2
)

. (1.9)
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dγ(λ, µ) =
1

(2π)2
|C1(λ, µ)|−2χC̃(λ, µ)dλdµ+

1

(2π)2
C2(λ, µ)χD̃(λ, µ)dλdµ.

(1.10)

where for (λ0, µ0) ∈ D̃ we denote by

C2(λ0, µ0) = Resµ=µ0 [C1(λ0, µ).C1(λ0,−µ)]−1. (1.11)

- Lp(C̃ ∪ D̃, dγ) the space of measurable functions on C̃ ∪ D̃ such that

||f ||γ,p = (

∫
C̃∪D̃
|f(λ, µ)|pdγ(λ, µ))

1
p < +∞, if 1 ≤ p < +∞,

||f ||γ,∞ = ess sup(λ,µ)∈C̃∪D̃|f(λ, µ)| < +∞, if p = +∞.
- H∗(C2) the space of entire functions on C2, even with respect to the first
variable, rapidly decreasing and of exponential type.
- H0

∗ (C2) the space of entire functions ψ in H∗(C2), rapidly decreasing on D̃

∀k ∈ N, sup
(λ,µ)∈D̃

(1 + |λ|2 + |µ|2)k|ψ(λ, µ)| < +∞

We provide these spaces with the classical topologies.

Definition 1.1 The Fourier transform associated with the operators D1, D2

of a function f in D∗(R2) is defined by

∀(λ, µ) ∈ C2, F(f)(λ, µ) =

∫
K
f(y, θ)ϕ−λ,µ(y, θ)Aα(y)dydθ. (1.12)

The following Proposition gives some properties of the transform F .

Proposition 1.3 For f ∈ L1
Aα

(K) we have

||F(f)||γ,∞ ≤ ||f ||α,1. (1.13)

Theorem 1.1 The Fourier transform F is a topological isomorphism from
D∗(R2) onto H0

∗ (C2).

Theorem 1.2 For every f ∈ L2
Aα

(K) such that F(f) ∈ L1(C̃ ∪ D̃, dγ), we
have the following inversion formula

f(y, θ) =

∫
C̃∪D̃

ϕλ,µ(y, θ)F(f)(λ, µ)dγ(λ, µ), a.e on K (1.14)

Theorem 1.3 i) Plancherel formula: For all f in D∗(R2) we have∫
K
|f(y, θ)|2Aα(y)dydθ =

∫
C̃∪D̃
|F(f)(λ, µ)|2dγ(λ, µ). (1.15)

ii) Plancherel theorem: The Fourier transform can be extended to an isometric

isomorphism from L2
Aα

(K) onto L2(C̃ ∪ D̃, dγ(λ, µ)).
(see [5-6]).
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2 The generalized translation operators asso-

ciated with the operators D1, D2

Definition 2.1 The generalized translation operators T(y,θ), (y, θ) ∈ K, asso-
ciated with the operators D1, D2 are defined for f ∈ C∗(R2), by
i) If α > 0, for all (y, θ), (x, τ) ∈ K

T(y,θ)f(x, τ) =
α

π

∫
D

f [cosh y coshxei(θ+τ) + sinh y sinhxξ](1− |ξ|)α−1dm(ξ).

(2.1)
where D is the unit disk of C of center o and dm(ξ1 + iξ2) = dξ1dξ2

ii) If α = 0, for all (y, θ), (x, τ) ∈ K

T(y,θ)f(x, τ) =
1

2π

∫ 2π

0

f [cosh y coshxei(θ+τ) + sinh y sinhxeiΨ]dΨ (2.2)

Proposition 2.1 For f ∈ C∗(R2) we have
i) For all θ ∈ R,

T(0,θ)f(x, τ) = f(x, θ + τ)

ii)For all (y, θ), (x, τ) ∈ K,

T(y,θ)f(x, τ) = T(x,τ)f(y, θ)

T(y,θ) ◦ T(x,τ) = T(x,τ) ◦ T(y,θ)

T(0,0) = Id

Proposition 2.2 The generalized translation operators T(y,θ), (y, θ) ∈ K, sat-
isfy:
i) For every bounded function f in C∗(R2) and for all (y, θ) ∈ K, the function
T(y,θ)f belongs to C∗(R2).
ii) (Product formula) For all (y, θ), (x, τ) ∈ K and (λ, µ) ∈ C2 we have,

T(y,θ)ϕλ,µ(x, τ) = ϕλ,µ(y, θ)ϕλ,µ(x, τ). (2.3)

Definition 2.2 The translation operators T(y,θ), (y, θ) ∈ K, associated with
the operators D1, D2 are defined for f in L2

Aα
(K) , by

∀(λ, µ) ∈ Γ,F(T(y,θ)f)(λ, µ) = ϕλ,µ(y, θ)F(f)(λ, µ). (2.4)
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2.1 The convolution product associated with the oper-
ators D1, D2

Definition 2.3 The convolution product associated with the operators D1, D2

of two functions f and g in D∗(R2) is defined by

f ∗ g(y, θ) =

∫
K
f(x, τ)T(y,θ)g(x,−τ)Aα(x)dxdτ, (2.5)

Proposition 2.3 i) Let f ,g be in L2
Aα

(K). Then the function f ∗ g given
for (y, θ) ∈ K, by

f ∗ g(y, θ) =

∫
K
f(x, τ)T(y,θ)g(x,−τ)Aα(x)dxdτ, (2.6)

is continuous on K, tends to zero at infinity, and we have

sup
(y,θ)∈K

|f ∗ g(y, θ)| ≤ ||f ||α,2||g||α,2. (2.7)

ii) Let f be in L2
Aα

(K) and g in L1
Aα

(K) then,
- the function f ∗ g defined almost everywhere on K, by

f ∗ g(y, θ) =

∫
K
f(x, τ)T(y,θ)g(x,−τ)Aα(x)dxdτ, (2.8)

belongs to L2
Aα

(K) and we have

||f ∗ g||α,2 ≤ ||f ||α,2||g||α,1. (2.9)

and
F(f ∗ g) = F(f)F(g). (2.10)

2.2 Properties of the L2-norm of the generalized trans-
lation operators of functions of L1

Aα
(K) ∩ L2

Aα
(K)

Proposition 2.4 For (y, θ) ∈ K and f ∈ L2
Aα

(K), the function T(y,θ)f belongs
to L2

Aα
(K) and we have

||T(y,θ)f ||α,2 ≤ ||f ||α,2. (2.11)

Proposition 2.5 Let g be a function in L1
Aα

(K) ∩ L2
Aα

(K).
i) We have for all (y, θ) ∈ K,

||T(y,θ)g||2α,2 =

∫
C̃∪D̃
|ϕλ,µ(y, θ)|2|F(g)(λ, µ)|2dγ(λ, µ). (2.12)
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ii) We have

||T(y,θ)g||2α,2 = T(y,θ)(g ∗ g∗)(y, θ), a.e on K, (2.13)

with
g∗(y, θ) = g(y,−θ). (2.14)

Proof.
i) From Theorem 1.3 and (2.4), we have for (y, θ) ∈ K,

||T(y,θ)g||2α,2 =

∫
K
|T(y,θ)(g)(t, τ)|2Aα(t)dtdτ

=

∫
C̃∪D̃
|F(T(y,θ)g)(λ, µ)|2dγ(λ, µ)

=

∫
C̃∪D̃
|ϕλ,µ(y, θ)|2|F(g)(λ, µ)|2dγ(λ, µ).

ii) As the function g is in L1
Aα

(K) ∩ L2
Aα

(K),then from (2.8) , the function
g ∗ g∗ belongs to L2

Aα
(K) and from (2.4),(2.10),(2.9),(1.5),we have for (y, θ) ∈

K, ∀(λ, µ) ∈ C̃ ∪ D̃:

F(T(y,θ)(g ∗ g∗))(λ, µ) = ϕλ,µ(y, θ)F(g ∗ g∗)(λ, µ)

= ϕλ,µ(y, θ)F(g)(λ, µ)F(g∗)(λ, µ)

= ϕλ,µ(y, θ)F(g)(λ, µ)F(g)(λ, µ).

Thus,
F(T(y,θ)(g ∗ g∗))(λ, µ) = ϕλ,µ(y, θ)|F(g)(λ, µ)|2.

On the other hand, from Theorem 1.3 and (1.4), we deduce that F(T(y,θ)(g∗g∗))
belongs to L1(C̃ ∪ D̃, dγ). Thus from Theorem 1.2 we deduce that for almost
all
(x, τ) ∈ K, we have

T(y,θ)(g ∗ g∗)(x, τ) =

∫
C̃∪D̃

ϕλ,µ(x, τ)ϕλ,µ(y, θ)|F(g)(λ, µ)|2dγ(λ, µ). (2.15)

We deduce (2.13) by taking (x, τ) = (y, θ) in this relation and (2.12).

Proposition 2.6 Let g be a non negligible function in L1
Aα

(K) ∩ L2
Aα

(K).
Then,
i) The function

(y, θ) −→ ||T(y,θ)g||α,2 is continuous on K. (2.16).

ii) For all (y, θ) ∈ K,
||T(y,θ)g||α,2 6= 0. (2.17)
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To prove this proposition we need the following Lemma.

Lemma 2.1 We consider an entire function f on C2, and N = {λ ∈ R2, f(λ) =
0} it’s set of real zero. Then the Lebesgue measure of the set N is equal to
zero.

Proof
We write the function f(λ) in the following form

f(λ) =
∑
α∈N2

aαλ
α, (λ = (λ1, λ2) ∈ C2)

where aα are complex constants and λα = λα1
1 λ

α2
2 , α = (α1, α2).

We write f/R2 the restriction of f on R2 by

∀λ ∈ R2, f/R2(λ) = φ1(λ) + iφ2(λ),

where φ1 and φ2 are real analytic functions.
More precisely for all λ ∈ R2, we have

φ1(λ) =
∑
α∈N2

Re(aα)λα,

and
φ2(λ) =

∑
α∈N2

Im(aα)λα.

Then
N = Nφ1 ∩Nφ2 ,

where Nφ1 and Nφ2 are respectively the set of real zero of the functions φ1 and
φ2.
On the other hand, the set of zero of a real analytic function is of the form N =
S1 ∪ S2 (disjoint union) where Sj is a sub-variety (real analytic) of dimension
j. The set Sj can be empty.
But it is well known that the Lebesgue measure of any sub-variety of R2 of
dimension 1 is equal to zero. Then the Lebesgue measures of Nφ1 and Nφ2 are
equal to zero and thus the Lebesgue measure of N is equal to zero.
Proof of Proposition 2.6
i) From Proposition 2.5, we have

∀(y, θ) ∈ K, ||T(y,θ)g||2α,2 =

∫
C̃∪D̃
|ϕλ,µ(y, θ)|2|F(g)(λ, µ)|2dγ(λ, µ).

For all (λ, µ) ∈ C̃ ∪ D̃, the function (y, θ) −→ |ϕλ,µ(y, θ)|2|F(g)(λ, µ)|2 is

continuous on K and bounded by |F(g)(λ, µ)|2 which is in L1(C̃ ∪ D̃, dγ), then
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from the dominated convergence theorem, the function (y, θ) −→ ||T(y,θ)g||α,2
is continuous on K.
ii) - If (y, θ) = (0, 0), we have

||T(0,0)g||α,2 = ||g||α,2 6= 0.

- If (y, θ) ∈ K\{(0, 0)}. Suppose that there exists (y0, θ0) ∈ K\{(0, 0)} such
that

||T(y0,θ0)g||α,2 = 0.

From Proposition 2.5, we have∫
C̃∪D̃
|ϕλ,µ(y0, θ0)|2|F(g)(λ, µ)|2dγ(λ, µ) = 0.

The function (λ, µ) −→ ϕλ,µ(y0, θ0) is even with respect to the variable µ and

entire on C2. We denote by Nα(y0, θ0) = {(λ, µ) ∈ C̃, ϕλ,µ(y0, θ0) = 0}. We
have∫
C̃∪D̃
|ϕλ,µ(y0, θ0)|2|F(g)(λ, µ)|2dγ(λ, µ) =

∫
Nα(y0,θ0)

|ϕλ,µ(y0, θ0)|2|F(g)(λ, µ)|2dγ(λ, µ)

+

∫
Nc
α(y0,θ0)

|ϕλ,µ(y0, θ0)|2|F(g)(λ, µ)|2dγ(λ, µ) = 0,

where N c
α(y0, θ0) is the complementary of Nα(y0, θ0).

From Lemma 2.1 the Lebesgue measure of Nα(y0, θ0) is equal to zero. Then∫
Nc
α(y0,θ0)

|ϕλ,µ(y0, θ0)|2|F(g)(λ, µ)|2dγ(λ, µ) = 0.

Thus for all (λ, µ) ∈ N c
α(y0, θ0), we have

|F(g)(λ, µ)|2 = 0.

On the other hand from the relation (1.15) we have

||g||2α,2 =

∫
C̃∪D̃
|F(g)(λ, µ)|2dγ(λ, µ)

=

∫
Nα(y0,θ0)

|F(g)(λ, µ)|2dγ(λ, µ) +

∫
Nc
α(y0,θ0)

|F(g)(λ, µ)|2dγ(λ, µ).(2.18)

By applying to this relation the fact that the Lebesgue measure of Nα(y0, θ0)
is equal to zero and the relation (2.18), we deduce that

||g||α,2 = 0.

This contradicts the fact that ||g||α,2 6= 0.
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2.3 The Gauss kernel associated with the operators D1, D2

2.3.1 Definition and properties of the heat kernel Et

Definition 2.4 The heat kernel Et, t > 0, associated with the operators D1, D2

is given by

∀(y, θ) ∈ K, Et(y, θ) =

∫
C̃∪D̃

e−t(λ
2+µ2+ 9

4
)ϕλ,µ(y, θ)dγ(λ, µ). (2.19)

The function Et, t > 0, possesses the following proprieties
The function Et, t > 0 is of class C∞ on K
i) We have

||Et||α,1 = 1. (2.20)

ii) For all (λ, µ) ∈ Γ ∪ {(0, i3
2
)}, we have

F(Et)(λ, µ) = e−t(λ
2+µ2+ 9

4
). (2.21)

iii) For all t > 0, s > 0, we have

∀(y, θ) ∈ K, Et ∗ Es(y, θ) = Et+s(y, θ). (2.22)

2.3.2 Properties of the L2-norm of the Gauss kernel

The Gauss kernel E(t, (y, θ), (x, τ)) associated with the operators D1, D2 is
defined by

E(t, (y, θ), (x, τ)) = T(y,θ)(Et)(x, τ), (y, θ), (x, τ) ∈ K, (2.23)

Remark 2.1 By using the relation (2.19) and (2.4), the relation (2.23) can
also written in the form

∀(y, θ), (x, τ) ∈ K, E(t, (y, θ), (x, τ)) =

∫
C̃∪D̃

e−t(λ
2+µ2+ 9

4
)ϕλ,µ(y, θ)ϕλ,µ(x,−τ)dγ(λ, µ).

(2.24)

Proposition 2.7 i)For all t > 0 we have

∀(x, τ) ∈ K, ||E(t, (x, τ), (., .))||2α,2 = E(2t, (x, τ), (x, τ)). (2.25)

ii)For all t > 0 we have

E(2t, (y, θ), (y, θ)) ≤ ||Et||2α,2. (2.26)
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Proof.
i) From Proposition 2.5 ii), the fact that the function Et belongs to S∗(R2)

and the relations (2.22),(2.23), we have

∀(x, τ) ∈ K, ||E(t, (x, τ), (., .))||2α,2 = T(x,τ)(Et ∗ (Et)
∗)(x, τ)

= T(x,τ)(E2t)(x, τ)

= E(2t, (x, τ), (x, τ)).

ii)From the relations (2.23) ,(2.25) and (2.11) we deduce that for all t > 0
we have

E(2t, (y, θ), (y, θ)) ≤ ||Et||2α,2.

Remark 2.2 From Theorem (1.1) and (2.23) we deduce that the function
E(t, (y, θ), (x, τ)) is bounded.

3 Wavelets associated with the operators D1, D2

We consider in this section a non negligible function g in L1
Aα

(K) ∩ L2
Aα

(K).
Notation. We denote by Mp

g,s(K), s ∈ R, p = 1, 2, the space of measurable
functions on K, such that

||f ||pMp
g,s

=

∫
K
|f((y, θ))|p Aα(y)dydθ

||T(y,θ)g||2(s−1)
α,2

< +∞.

Remark 3.1 From the relation (2.11), we deduce that
- If s < 1. LpAα(K) ⊂Mp

g,s(K).
- If s = 1. Mp

g,s(K) = LpAα(K).
- If s > 1. Mp

g,s(K) ⊂ LpAα(K).

Definition 3.1 Let (λ, µ) ∈ C̃ ∪ D̃, (y, θ) ∈ K and s ∈ R. The family of
wavelets {gs(λ,µ),(y,θ)}s∈R associated with the operators D1, D2 is defined on K
by

gs(λ,µ),(y,θ)(x, τ) = ϕλ,µ(x, τ)
T(y,θ)g(x, τ)

||T(x,τ)g||sα,2
. (3.1)

Proposition 3.1 We suppose that the function g is such that, for all (y, θ) ∈
K
and s ∈ R, the function (x, τ) −→

T(y,θ)g(x, τ)

||T(x,τ)g||sα,2
belongs to L∞Aα(K) ∩ L2

Aα
(K)

(resp. L∞Aα(K) ∩M2
g,s(K)).

Then the function gs(λ,µ),(y,θ) belongs to L∞Aα(K) ∩ L2
Aα

(K) (resp. L∞Aα(K) ∩
M2

g,s(K)).
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Proof.
We deduce the results from the relations (3.1),(1.4).

Proposition 3.2 Under the hypothesis of Proposition 3.1 and if moreover

i) for s ≤ 1. For (x, τ) ∈ K the function (y, θ) −→
T(y,θ)g(x, τ)

||T(x,τ)g||sα,2
is continuous

from K into L2
Aα,2

(K).

ii) For s > 1. For (x, τ) ∈ K the function (y, θ) −→
T(y,θ)g(x, τ)

||T(x,τ)g||sα,2
is continuous

from K into M2
g,s(K).

Then,
i) For s ≤ 1. The function ((λ, µ), (y, θ)) −→ gs(λ,µ),(y,θ) is continuous from

C̃ ∪ D̃ ×K into L2
Aα

(K).
ii) For s > 1. The function ((λ, µ), (y, θ)) −→ gs(λ,µ),(y,θ) is continuous from

C̃ ∪ D̃ ×K into M2
g,s(K).

Proof.
i) If s ≤ 1. Let ((λ0, µ0), (y0, θ0)) ∈ C̃ ∪ D̃ × K. Using (3.1) and the fact

that T(y,θ)g(x, τ) = T(x,τ)g(y, θ) we obtain
||gs(λ,µ),(y,θ) − gs(λ0,µ0),(y0,θ0)||α,2

≤ ||ϕλ0,µ0(x, τ)(
T(x,τ)g(y,θ)

||T(x,τ)g||sα,2
− T(x,τ)g(y0,θ0)

||T(x,τ)g||sα,2
)||α,2

+ ||(ϕλ,µ(x, τ)− ϕλ0,µ0(x, τ)).
T(x,τ)g(y0,θ0)

||T(x,τ)g||sα,2
||α,2

+ ||(ϕλ,µ(x, τ)−ϕλ0,µ0(x, τ))(
T(x,τ)g(y,θ)

||T(x,τ)g||sα,2
− T(x,τ)g(y0,θ0)

||T(x,τ)g||sα,2
)||α,2

Using (1.4), we get

||gs(λ,µ),(y,θ) − gs(λ0,µ0),(y0,θ0)||α,2 ≤ 3||
T(x,τ)g(y, θ)

||T(x,τ)g||sα,2
−
T(x,τ)g(y0, θ0)

||T(x,τ)g||sα,2
||α,2

+ ||(ϕλ,µ(x, τ)− ϕλ0,µ0(x, τ)).
T(x,τ)g(y0, θ0)

||T(x,τ)g||sα,2
||α,2

From hypothesis i) we obtain

lim
(y,θ)→(y0,θ0)

||
T(x,τ)g(y, θ)

||T(x,τ)g||sα,2
−
T(x,τ)g(y0, θ0)

||T(x,τ)g||sα,2
||α,2 = 0, (3.2)

and from Proposition 3.1, the relation (1.6) and the dominated convergence
theorem, we get

lim
(λ,µ)→(λ0,µ0)

||(ϕλ,µ(x, τ)− ϕλ0,µ0(x, τ)).
T(x,τ)g(y0, θ0)

||T(x,τ)g||sα,2
||α,2 = 0. (3.3)

Using (3.2),(3.3) we deduce that

lim
((λ,µ),(y,θ))→((λ0,µ0),(y0,θ0))

||gs(λ,µ),(y,θ) − gs(λ0,µ0),(y0,θ0)||α,2 = 0.
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ii) If s > 1. Using the same proof as for case s ≤ 1, by changing the

measure Aα(x)dx by the measure
Aα(x)dx

||T(x,τ)g||2(s−1)
α,2

we deduce that the function

(λ, y) −→ gs(λ,µ),(y,θ) is continuous from C̃ ∪ D̃ ×K into M2
g,s(K).

4 Example

As an example of the function g considered in the previous section, we take
the heat kernel Et, t > 0, associated with the operators D1, D2. We obtain
the Gaussian wavelets associated with the operators D1, D2.

Definition 4.1 Let ((λ, µ), (y, θ)) ∈ C̃ ∪ D̃ × K . The family of Gaussian
wavelets Gs

(λ,µ),(y,θ) given by

Gs
(λ,µ),(y,θ)(x, τ) = ϕλ,µ(x, τ)

T(x,τ)Et(y, θ)

‖T(x,τ)Et(y, θ)‖s
. (4.1)

Remark 4.1 The family of Gaussian wavelets Gs
(λ,µ),(y,θ) is also given by

Gs
(λ,µ),(y,θ)(x, τ) = ϕλ,µ(x, τ)

E(t, (y, θ), (x, τ))

(E(2t, (x, τ), (x, τ)))s/2
. (4.2)

Proposition 4.1 For all (y, θ),∈ K and s ≤ 0, the function
E(t, (y, θ), (x, τ))

(E(2t, (x, τ), (x, τ)))s/2

belongs to L∞Aα(K) ∩ L2
Aα

(K) (resp. L∞Aα(K) ∩M2
g,s(K)), then from the Propo-

sition 3.1 the function Gs
(λ,µ),(y,θ) belongs to L∞Aα(K)∩L2

Aα
(K) (resp. L∞Aα(K)∩

M2
g,s(K)).

Proof.
From the relations (2.23),(2.25) and (2.26), we deduce that there exists a pos-
itive constant M0(t) such that for all (y, θ) ∈ K, we have

∀(x, τ) ∈ K, E(t, (y, θ), (x, τ))

(E(2t, (x, τ), (x, τ)))s/2
≤M0(t). (4.3)

We obtain the result asked from (1.4), the continuity of the function

(x, τ) 7−→ E(t, (y, θ), (x, τ))

(E(2t, (x, τ), (x, τ)))s/2
on K, and the relation (4.3).

5 The generalized windowed transform asso-

ciated with the operators D1, D2

In this section, we take a non negligible function g in L1
Aα

(K) ∩ L2
Aα

(K) satis-
fying the hypothesis of Propositions 3.1, 3.2.
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Definition 5.1 Let s ∈ R. The generalized windowed transform Φs
g is defined

for regular function f on K by

Φs
g(f)((λ, µ), (y, θ)) =

∫
K
f(x, τ)(gs(λ,µ),(y,θ))

∗(x, τ)Aα(x)dxdτ, ((λ, µ), (y, θ)) ∈ C̃∪D̃×K,

(5.1)
where

∀(x, τ) ∈ K, (gs(λ,µ),(y,θ))
∗(x, τ) = gs(λ,µ),(y,θ)(x,−τ).

Remark 5.1 The relation (5.1) can also be written in the following two forms.

i) Φs
g(f)((λ, µ), (y, θ)) = (

ϕλ,µf

||T(.,.)g||sα,2
) ∗ g∗(y,−θ), (5.2)

where ∗ is the convolution product defined by (2.6).

ii) Φs
g(f)((λ, µ), (y, θ)) = F(f.

T(y,θ)(g
∗)

||T(.,.)g||sα,2
)(−λ, µ), (5.3)

where F is Fourier transform associated with the operators D1, D2 given by
(1.12).

5.1 Plancherel formula for the generalized windowed
transform

Theorem 5.1 For all s ∈ R, we have for the transform Φs
g the following

Plancherel formula∫
C̃∪D̃

∫
K
|Φs

g(f)((λ, µ), (y, θ))|2dγ(λ, µ)Aα(y)dydθ = ||f ||2M2
g,s
.

This formula is true for the functions of the following spaces.

i) If s ≤ 1. f ∈ L2
Aα

(K).

ii) If s > 1. f ∈M2
g,s(K).

Proof.

i) If s ≤ 1. For all (y, θ) ∈ K, the function
T(y,θ)(g

∗)(x, τ)

||T(x,τ)g||sα,2
is in L∞Aα(K) and as

f is in L2
Aα

(K), then the function (x, τ) −→ f(x, τ)
T(y,θ)(g

∗)(x, τ)

||T(x,τ)g||sα,2
belongs to

L2
Aα

(K). Thus, from (5.3) we deduce that
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∫
C̃∪D̃

∫
K
|Φs

g(f)((λ, µ), (y, θ))|2Aα(y)dydθdγ(λ, µ)

=

∫
C̃∪D̃

∫
K
|F(f.

T(y,θ)(g
∗)

||T(.,.)g||sα,2
)(λ,−µ)|2Aα(y)dydθdγ(λ, µ).

From Theorem 1.3, the fact that

||T(x,τ)(g
∗)||α,2 = ||T(x,τ)(g)||α,2

and Fubini-Tonnelli’s theorem we obtain∫
K

∫
C̃∪D̃

Φs
g(f)((λ, µ), (y, θ))|2dγ(λ, µ)Aα(y)dydθ

=

∫
K

|f(x, τ)|2

||T(x,τ)(g)||2sα,2
(

∫
K
|T(y,θ)g(x, τ)|2Aα(y)dydθ)Aα(x)dxdτ

=

∫
K

|f(x, τ)|2

||T(x,τ)(g)||2(s−1)
α,2

Aα(x)dxdτ

= ||f ||2M2
g,s
.

ii) If s > 1. We obtain the result in this case by using the same proof as for
the case s ≤ 1.

5.2 Inversion formula for the generalized windowed trans-
form

Theorem 5.2 For all s ∈ R, the transform Φs
g admits the following inversion

formula. Let Sp,q be the subset of C̃ ∪ D̃ and lim
(p,q)→+∞

Sp,q = C̃ ∪ D̃

Then we have for (x, τ) ∈ K

f(x, τ) = lim
(p,q)→+∞

∫
Sp,q

∫
K

Φs
g(f)((λ, µ), (y, θ))g2−s

(λ,µ),(y,θ)(x,−τ)Aα(y)dydθdγ(λ, µ).

(5.4)
the limit is in L2

α(K). This formula is true for the functions f of the following
spaces.

i) If s ≤ 1. f ∈ L1
Aα

(K) ∩ L2
Aα

(K).

ii) If s > 1. f ∈M1
g,s(K) ∩M2

g,s(K).

To prove this theorem, we need the following lemma.
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Lemma 5.1 For all (λ, µ) ∈ C̃ ∪ D̃, the integral∫
K

Φs
g(f)((λ, µ), (y, θ))g2−s

(λ,µ),(y,θ)(x,−τ)Aα(y)dydθ, (5.5)

is absolutely convergent and satisfies for all (λ, µ), (y, θ) ∈ C̃ ∪ D̃ × K, the
following relation∫
K

Φs
g(f)((λ, µ), (y, θ))g2−s

(λ,µ),(y,θ)(x,−τ)Aα(y)dydθ =
ϕλ,µ(x,−τ)

||T(x,−τ)g||2α,2
F(f.T(x,−τ)(g∗g∗))(−λ, µ).

(5.6)
These results are true for the functions f of the following spaces.

i) If s ≤ 1. f ∈ L1
Aα

(K) ∩ L2
Aα

(K).

ii) If s > 1. f ∈M1
g,s(K) ∩M2

g,s(K).

Proof.
i) If s ≤ 1. Using (1.4), we have for all ((λ, µ), (x, τ)) ∈ C̃ ∪ D̃ ×K,∫
K
|Φs

g(f)((λ, µ), (y, θ))g2−s
(λ,µ),(y,θ)(x,−τ)|Aα(y)dydθ

≤ 1

||T(x,−τ)g||2−sα,2

∫
K
|Φs

g(f)((λ, µ), (y, θ))||T(y,θ)g(x,−τ)|Aα(y)dydθ.

Using Hölder’s inequality and the relation (5.2) we obtain,∫
K
|Φs

g(f)((λ, µ), (y, θ))g2−s
(λ,µ),(y,θ)(x,−τ)|Aα(y)dydθ

≤ 1

||T(x,−τ)g||2−sα,2

||Φs
g(f)((λ, µ), (., .))||α,2||g||α,2

≤
||f ||α,1||g||2α,2
||T(x,−τ)g||2α,2

< +∞.

Thus the integral (5.5) is absolutely convergent.

By using (5.2), we obtain for all ((λ, µ), (x, τ)) ∈ C̃ ∪ D̃ ×K,∫
K

Φs
g(f)((λ, µ), (y, θ))g2−s

(λ,µ),(y,θ)(x,−τ)Aα(y)dydθ

=
ϕλ,µ(x,−τ)

||T(x,−τ)g||2α,2

∫
K

[(ϕλ,µ(., .)f)∗g∗(y,−θ)].T(y,θ)g(x,−τ)Aα(y)dydθ.

(5.7)
But from the associativity of the convolution product associated with the op-
erators D1, D2, we get
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∫
K

[(ϕλ,µ(., .)f)∗g∗(y,−θ))].T(y,θ)g(x,−τ)Aα(y)dydθ = (ϕλ,µ(., .)f)∗(g∗g∗)(x,−τ)

= F(f.T(x,−τ)(g∗g∗))(−λ, µ). (5.8)

Thus, we deduce (5.6) from the relation (5.7), (5.8).

ii) If s > 1. The same arguments used in i) imply the results of the Lemma
5.1 for the function f of the space M1

g,s(K) ∩M2
g,s(K).

Proof of Theorem 5.2.
i) If s ≤ 1. For all f in L1

Aα
(K) ∩ L2

Aα
(K) and (x, τ) ∈ K, we have from

Lemma 5.1∫
Sp,q

(

∫
K

Φs
g(f)((λ, µ), (y, θ))g2−s

(λ,µ),(y,θ)(x,−τ)Aα(y)dydθ)dγ(λ, µ)

=
1

||T(x,τ)g||2α,2

∫
Sp,q

F(f.T(x,−τ)(g ∗ g∗))(λ,−µ)ϕλ,µ(x,−τ)dγ(λ, µ).

As the functions f and g are in L1
Aα

(K)∩L2
Aα

(K), then from Proposition 2.3 ,
the function (t, ρ) −→ f(t, ρ).T(x,−τ)(g ∗ g∗)(t, ρ) belongs to L1

Aα
(K)∩L2

Aα
(K).

Then, from Theorem 1.2 and Proposition 2.5, we deduce that

lim
(p,q)→+∞

∫
Sp,q

(

∫
K

Φs
g(f)((λ, µ), (y, θ))g2−s

(λ,µ),(y,θ)(x,−τ)Aα(y)dydθ)dγ(λ, µ)

=
1

||T(x,τ)g||2α,2
f(x, τ).T(x,−τ)(g ∗ g∗)(x, τ)

= f(x, τ).

ii) If s > 1. Let f be in ∈M1
g,s(K)∩M2

g,s(K). We obtain the result of this
case by using the same proof as for the previous case.

Theorem 5.3 We consider the function g in S∗(R2). Then for all f in
S∗(R2)and s ∈ R, we have the following inversion formula, ∀(x, τ) ∈ K,

f(x, τ) =

∫
C̃∪D̃

∫
K

Φs
g(f)((λ, µ), (y, θ))g2−s

(λ,µ),(y,θ)(x,−τ)Aα(y)dydθdγ(λ, µ).

(5.9)

Proof.
We deduce the relation (5.9) from (5.6), Proposition 2.5 and Theorem 1.2.
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6 Example

The Gaussian windowed transform Φs
G, s ≤ 0, associated with the operators

D1, D2 is defined for regular function f by

Φs
G(f)((λ, µ), (y, θ)) =

∫
K
f(x, τ)(Gs

(λ,µ),(y,θ))
∗(x, τ)Aα(x)dxdτ, (6.1)

(λ, µ), (y, θ) ∈ C̃ ∪ D̃ × K where Gs
(λ,µ),(y,θ) is the Gaussian wavelet given by

(4.1).

By applying to this transform the results of the previous sections we obtain
for the transform Φs

G, s ∈ R, analogous Plancherel and inversion formulas.

7 Open Problem

In the future work I will to study the wavelet and the generalized windowed
transform on the generalized Sobolev spaces.
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[2] A. Hassini and K. Trimèche, Wavelets and generalized windowed trans-
forms associated with the Dunkl-Bessel-Laplace operator on Rd × R+,
Mediterr. J. Math. 12,(2015), p. 1323-1344.

[3] T.H. Koornwinder, The continuous wavelet transform. Series in Approx-
imations and Decompositions, Vol.1. Wavelets: An elementary treatment
of theory and applications. Edited by T.H.Koornwinder, World Scientific,
(1993), p.27-48.

[4] M. Flensted-Jensen, Spherical Functions on a Simply Connected Semi-
groupe wavelet Lie Group II.The Paley-Wiener Theorem for the Rank
one Case, Math.Ann.(1977),228, p.65-92.
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[7] K.Trimèche, Generalized Wavelets and Hypergroups, Gordon and Breach
Science Publishers, 1997.


