Int. J. Open Problems Complex Analysis, Vol. 10, No. 2, July 2018 ISSN 2074-2827; Copyright ©ICSRS Publication, 2018 www.i-csrs.org

Non-Bazilevic Results for Classes of Multivalent Functions Defined by Integral Operator

M. K. Aouf and A. O. Mostafa

Department of Mathematics, Faculty of Science, Mansoura University
Mansoura 35516, Egypt
e-mail: mkaouf127@yahoo.com
e-mail: adelaeg254@yahoo.com

G. M. El-Hawsh

Department of Mathematics, Faculty of Science, Fayoum University Fayoum 63514, Egypt e-mail: gma05@fayoum.edu.eg

Received 15 January 2018; Accepted 1 April 2018

Communicated by Imran Faisal

Abstract

By making use of the principle of subordination between analytic functions, we introduce non-Bazlevic classes of multivalent functions defined by integral operator. Various results as subordination, superordination, sandwich type result and distortion theorems are obtained.

Keywords: Analytic function, p-valent function, Hadamarh product, integral operator.

2010 Mathematical Subject Classification: 30C45.

1 Introduction

Let H[a, k] be the class of analytic functions of the form:

$$f(z) = a + a_k z^k + a_{k+1} z^{k+1} + \dots \qquad (z \in \mathbb{U}),$$

and $\mathbb{A}(p)$ be the class of functions of the form

$$f(z) = z^p + \sum_{n=1}^{\infty} a_{p+n} z^{p+n} \qquad (p \in \mathbb{N} = \{1, 2, ...\}),$$
 (1.1)

which are analytic and p-valent in $\mathbb{U} = \{z : |z| < 1\}$.

For two functions f(z) and g(z), analytic in \mathbb{U} , we say that the function f(z) is subordinate to g(z) in \mathbb{U} , if there exists a Schwarz function $\omega(z)$, which is analytic in \mathbb{U} with $\omega(0) = 0$ and $|\omega(z)| < 1$, $f(z) = g(\omega(z))$ $(z \in \mathbb{U})$.

We denote this subordination by $f(z) \prec g(z)$. Furthermore, if the function g(z) is univalent in \mathbb{U} , then we have the following equivalence (see for details [1], [3] and [6]; see also [9]):

$$f(z) \prec g(z) \iff f(0) = g(0) \text{ and } f(\mathbb{U}) \subset g(\mathbb{U}).$$

Let M be the class of functions $\Phi(z)$ which are analytic and univalent in \mathbb{U} and for which $\Phi(\mathbb{U})$ is convex with $\Phi(0) = 1$ and $Re\{\Phi(z)\} > 0$.

Tang et al. [10] (see also Seoudy and Aouf [8], Aouf et al. [2]), defined the operator $H_{p,\eta,\mu}^{\lambda,\delta}: \mathbb{A}(p) \to \mathbb{A}(p)$ by

$$\mathbb{H}_{p,\eta,\mu}^{\lambda,\delta}f(z) = z^p + \sum_{n=1}^{\infty} \frac{(\delta+p)_n (1+p-\mu)_n (1+p+\eta-\lambda)_n}{(1)_n (1+p)_n (1+p+\eta-\mu)_n} a_{p+n} z^{p+n}$$

$$(\mu, \eta \in R; \mu < p+1; -\infty < \lambda < \eta + p+1 \text{ and } \delta > -p).$$
 (1.2)

Specializing the parameters p, η, μ, λ and δ , we obtain various new operators, for example,

$$\mathbb{H}_{1,\eta,\mu}^{\lambda,\delta}f(z) = z + \sum_{n=2}^{\infty} \frac{(\delta+1)_{n-1}(2-\mu)_{n-1}(2+\eta-\lambda)_{n-1}}{(1)_{n-1}(2)_{n-1}(2+\eta-\mu)_{n-1}} a_n z^n$$

$$(\delta > -1; \ \eta, \mu \in \mathbb{R}; \ \mu < 2; \ -\infty < \lambda < \eta + 2);$$

$$\mathbb{H}_{p,\eta,\mu}^{\lambda,1} f(z) = z^p + \sum_{n=1}^{\infty} \frac{(1+p-\mu)_n (1+p+\eta-\lambda)_n}{(1)_n (1+p+\eta-\mu)_n} a_{p+n} z^{p+n}
(\eta, \mu \in \mathbb{R}; \ \mu < p+1; \ -\infty < \lambda < \eta + p+1);$$

$$\mathbb{H}_{p,\eta,\lambda}^{\lambda,\delta}f(z) = \mathbb{D}_p^{\lambda,\delta}f(z) = z^p + \sum_{n=1}^{\infty} \frac{(\delta+p)_n(1+p-\lambda)_n}{(1)_n(1+p)_n} a_{p+n}z^{p+n}$$

$$(\delta > -p; -\infty < \lambda < \eta + p + 1);$$

and

$$\mathbb{H}_{p,\eta,\mu}^{\mu,\delta} f(z) = \mathbb{D}_p^{\mu,\delta} f(z) = z^p + \sum_{n=1}^{\infty} \frac{(\delta + p)_n (1 + p - \mu)_n}{(1)_n (1 + p)_n} a_{p+n} z^{p+n}$$

$$(\mu \in \mathbb{R}; \ \mu < p+1; \ \delta > -p).$$

From (1.2), we can easily obtain the following identities:

$$z(\mathbb{H}_{p,\eta,\mu}^{\lambda,\delta}f(z))' = (\delta+p)\mathbb{H}_{p,\eta,\mu}^{\lambda,\delta+1}f(z) - \delta\mathbb{H}_{p,\eta,\mu}^{\lambda,\delta}f(z)$$
(1.3)

and

$$z(\mathbb{H}_{p,\eta,\mu}^{\lambda+1,\delta}f(z))' = (p+\eta-\lambda)\mathbb{H}_{p,\eta,\mu}^{\lambda,\delta}f(z) - (\eta-\lambda)\mathbb{H}_{p,\eta,\mu}^{\lambda+1,\delta}f(z). \tag{1.4}$$

Using the operator $\mathbb{H}_{p,\eta,\mu}^{\lambda,\delta}f(z)$ and for $\rho\in\mathbb{C},\,-1\leq B< A\leq 1$, let: (i) $R_{p,\eta,\mu}^{\lambda,\delta}(\alpha,\rho;A,B)=$

(i)
$$R_{p,\eta,\mu}^{\lambda,\delta}(\alpha,\rho;A,B) =$$

$$\left\{ f \in \mathbb{A}(p) : \begin{array}{l} \chi(z) = (1+\rho) \left(\frac{z^p}{H_{p,\eta,\mu}^{\lambda,\delta} f(z)} \right)^{\alpha} - \rho \left(\frac{H_{p,\eta,\mu}^{\lambda,\delta+1} f(z)}{H_{p,\eta,\mu}^{\lambda,\delta} f(z)} \right) \left(\frac{z^p}{H_{p,\eta,\mu}^{\lambda,\delta} f(z)} \right)^{\alpha} \\
\prec \frac{1+Az}{1+Bz}, \end{array} \right\}, \tag{1.5}$$

(ii)
$$T_{p,\eta,\mu}^{\lambda,\delta}(\alpha,\rho;A,B) =$$

$$\left\{ f \in \mathbb{A}(p) : \begin{array}{l} (1+\rho) \left(\frac{z^p}{H_{p,\eta,\mu}^{\lambda+1,\delta} f(z)} \right)^{\alpha} - \rho \left(\frac{H_{p,\eta,\mu}^{\lambda,\delta} f(z)}{H_{p,\eta,\mu}^{\lambda+1,\delta} f(z)} \right) \left(\frac{z^p}{H_{p,\eta,\mu}^{\lambda+1,\delta} f(z)} \right)^{\alpha} \\
\prec \frac{1+Az}{1+Bz}. \end{array} \right\}$$
(1.6)

Throughout this paper unless otherwise stated the parameters $\eta, \mu, \lambda, \delta, \rho, \alpha, A$ and B satisfy the constraints:

$$\eta, \mu \in \mathbb{R}, \ \mu < p+1, \ -\infty < \lambda < \eta + p+1, \ \delta > -p, \\
0 < \alpha < 1 \text{ and } p \in \mathbb{N}.$$

and all powers are understood as being principle values.

2 Preliminary results

In order to establish our main results, we need the following definition and Lemmas.

Definition 3 [7]. Denote by \mathcal{L} the set of all functions f that are analytic and injective on $\bar{U}\backslash E(f)$, where

$$E(f) = \left\{ \xi \in \partial \mathbb{U} : \lim_{z \to \xi} f(z) = \infty \right\},\,$$

and such that $f'(\xi) \neq 0$ for $\xi \in \bar{U} \setminus E(f)$.

Lemma 1[6]. Let h(z) be analytic and convex (univalent) in \mathbb{U} with h(0) = 1. Suppose also that the function g(z) given by

$$g(z) = 1 + c_k z^k + c_{k+1} z^{k+1} + \dots (2.1)$$

is analytic in U. If

$$g(z) + \frac{zg'(z)}{\gamma} \prec h(z)$$
 $(Re(\gamma) > 0),$ (2.2)

then

$$g(z) \prec q(z) = \frac{\gamma}{k} z^{-\frac{\gamma}{k}} \int h(t) t^{\frac{\gamma}{k} - 1} dt \prec h(z),$$

and q(z) is the best dominant of (2.2).

Lemma 2 [9]. Let q(z) be a convex univalent function in \mathbb{U} and let $\sigma \in \mathbb{C}$, $\tau \in \mathbb{C}^* = \mathbb{C} \setminus \{0\}$ with

$$\Re\left(1 + \frac{zq''(z)}{q'(z)}\right) > \max\left\{0, -Re\left(\frac{\sigma}{\tau}\right)\right\}.$$

If the function g(z) is analytic in \mathbb{U} and

$$\sigma g(z) + \tau z g'(z) \prec \sigma q(z) + \tau z q'(z),$$

then $g(z) \prec g(z)$ and g(z) is the best dominant.

Lemma 3 [7]. Let q(z) be convex univalent in \mathbb{U} and $m \in \mathbb{C}$. Further assume that Re(m) > 0. If $g(z) \in H[q(0), 1] \cap \mathcal{L}$, and g(z) + mzg'(z) is univalent in \mathbb{U} , then

$$q(z) + mzq'(z) \prec g(z) + mzg'(z),$$

implies $q(z) \prec g(z)$ and q(z) is the best subordinant.

Lemma 4 [4]. let F be analytic and convex in \mathbb{U} . If $f, g \in \mathbb{A} = \mathbb{A}(1)$ and $f, g \prec F$ then

$$\lambda f(z) + (1 - \lambda)g(z) \prec F(z) \quad (0 \le \lambda \le 1).$$

3 Main results

In the remender of this paper, $\chi(z)$ is given by (1.5).

Theorem 1. Let $f(z) \in R_{p,\eta,\mu}^{\lambda,\delta}(\alpha,\rho;A,B)$ with $Re(\rho) > 0$. Then

$$\left(\frac{z^p}{\mathbb{H}^{\lambda,\delta}_{p,\eta,\mu}f(z)}\right)^{\alpha} \prec q(z) = \frac{\alpha(p+\delta)}{\rho} \int\limits_{0}^{1} \frac{1 + Azu}{1 + Bzu} u^{\frac{\alpha(p+\delta)}{\rho} - 1} du$$

$$\prec \frac{1 + Az}{1 + Bz} \tag{3.1}$$

and q(z) is the best dominant.

Proof. Let

$$g(z) = \left(\frac{z^p}{\mathbb{H}_{p,n,\mu}^{\lambda,\delta} f(z)}\right)^{\alpha}.$$
 (3.2)

Then g(z) is of the form (2.1) and is analytic in \mathbb{U} . Differentiating (3.2) and using (1.3), we get

$$\chi(z) = g(z) + \frac{\rho z g'(z)}{\alpha(p+\delta)}.$$
(3.3)

As $f(z) \in R_{p,\eta,\mu}^{\lambda,\delta}(\alpha,\rho;A,B)$, we have

$$g(z) + \frac{\rho z g'(z)}{\alpha(p+\delta)} \prec \frac{1+Az}{1+Bz}$$
.

Applying Lemma 1 with $\gamma = \frac{\alpha(p+\delta)}{\rho}$, we get

$$\left(\frac{z^p}{\mathbb{H}^{\lambda,\delta}_{p,\eta,\mu}f(z)}\right)^{\alpha} \prec q(z) = \frac{\alpha\left(p+\delta\right)}{\rho}z^{\frac{-\alpha(p+\delta)}{\rho}}\int\limits_{0}^{z}\frac{1+At}{1+Bt}t^{\frac{\alpha(p+\delta)}{\rho}-1}dt$$

$$= \frac{\alpha(p+\delta)}{\rho} \int_{0}^{1} \frac{1 + Azu}{1 + Bzu} u^{\frac{\alpha(p+\delta)}{\rho} - 1} du \prec \frac{1 + Az}{1 + Bz}, \tag{3.4}$$

and q(z) is the best dominant, which ends the proof of Theorem 1.

Theorem 2. Let q(z) be univalent in $\mathbb{U}, \rho \in \mathbb{C}^*$, satisfies

$$Re\left(1 + \frac{zq''(z)}{q'(z)}\right) > \max\left\{0, -Re\left(\frac{\alpha(p+\delta)}{\rho}\right)\right\}.$$
 (3.5)

If $f(z) \in \mathbb{A}(p)$ satisfies

$$\chi(z) \prec q(z) + \frac{\rho z q'(z)}{\alpha(p+\delta)},$$
 (3.6)

then

$$\left(\frac{z^p}{\mathbb{H}^{\lambda,\delta}_{p,\eta,\mu}f(z)}\right)^{\alpha} \prec q(z),$$

and q(z) is the best dominant.

Proof. Let g(z) be defined by (3.2), then (3.3) holds. Combining (3.3) and (3.6), we fined that

$$g(z) + \frac{\rho z g'(z)}{\alpha(p+\delta)} \prec q(z) + \frac{\rho z q'(z)}{\alpha(p+\delta)}.$$
 (3.7)

By using Lemma 2 and (3.7), we easily get the assertion of Theorem 2.

Taking $q(z) = \frac{1+Az}{1+Bz} (-1 \le B < A \le 1)$ in Theorem 2, we get the following result.

Corollary 1. Let $\rho \in \mathbb{C}^*$ and $-1 \leq B < A \leq 1$, such that

$$Re\left(\frac{1-Bz}{1+Bz}\right) > \max\left\{0, -Re\left(\frac{\alpha(p+\delta)}{\rho}\right)\right\}.$$

If $f(z) \in \mathbb{A}(p)$ satisfies

$$\chi(z) \prec \frac{1+Az}{1+Bz} + \frac{\rho(A-B)z}{\alpha(p+\delta)(1+Bz)^2},$$

then

$$\left(\frac{z^p}{\mathbb{H}^{\lambda,\delta}_{p,\eta,\mu}f(z)}\right)^{\alpha} \prec \frac{1+Az}{1+Bz},$$

and $\frac{1+Az}{1+Bz}$ is the best dominant.

Theorem 3. Let q(z) be convex univalent in \mathbb{U} with $Re(\rho) > 0$. Also let

$$\left(\frac{z^p}{\mathbb{H}_{p,\eta,\mu}^{\lambda,\delta}f(z)}\right)^{\alpha} \in H\left[q(0),1\right] \cap \mathcal{L}$$

and $\chi(z)$ be univalent in \mathbb{U} . If

$$q(z) + \frac{\rho z q'(z)}{\alpha(p+\delta)} \prec \chi(z),$$

then

$$q(z) \prec \left(\frac{z^p}{\mathbb{H}_{p,\eta,\mu}^{\lambda,\delta} f(z)}\right)^{\alpha},$$

and the function q(z) is the best subdominant.

Proof. Let q(z) be defined by (3.2). Then

$$q(z) + \frac{\rho z q'(z)}{\alpha(p+\delta)} \prec \chi(z) = g(z) + \frac{\rho z g'(z)}{\alpha(p+\delta)}.$$

Applying Lemma 3 yields the assertion of Theorem 3.

Taking $q(z) = \frac{1+Az}{1+Bz} (-1 \le B < A \le 1)$ in Theorem 3, we get the following result.

Corollary 2. Let q(z) be convex univalent in \mathbb{U} and $-1 \leq B < A \leq 1$ with $Re(\rho) > 0$. Also let

$$\left(\frac{z^p}{\mathbb{H}_{p,n,\mu}^{\lambda,\delta}f(z)}\right)^{\alpha} \in H\left[q(0),1\right] \cap \mathcal{L},$$

and $\chi(z)$ be univalent in U. If

$$\frac{1+Az}{1+Bz} + \frac{\rho(A-B)z}{\alpha(p+\delta)(1+Bz)^2} \prec \chi(z),$$

then

$$\frac{1+Az}{1+Bz} \prec \left(\frac{z^p}{\mathbb{H}_{n,n,\mu}^{\lambda,\delta}f(z)}\right)^{\alpha},$$

and the function $\frac{1+Az}{1+Bz}$ is the best subdominant.

Combining Theorem 2 and Theorem 3, we easily get the following "Sandwich type result".

Theorem 4. Let $q_1(z)$ be convex univalent, $q_2(z)$ be univalent in \mathbb{U} and satisfies (3.5) with $\rho \in \mathbb{C}^*$. If

$$\left(\frac{z^p}{\mathbb{H}_{n,n,\mu}^{\lambda,\delta}f(z)}\right)^{\alpha} \in H\left[q(0),1\right] \cap \mathcal{L},$$

and $\chi(z)$ is univalent in \mathbb{U} , and if also

$$q_1(z) + \frac{\rho z q_1'(z)}{\alpha(p+\delta)} \prec \chi(z) = q_2(z) + \frac{\rho z q_2'(z)}{\alpha(p+\delta)},$$

then

$$q_1(z) \prec \left(\frac{z^p}{\mathbb{H}_{n,n,\mu}^{\lambda,\delta}f(z)}\right)^{\alpha} \prec q_2(z),$$

and $q_1(z)$ and $q_2(z)$ are the best subordinant and dominant respectively.

Theorem 5. If ρ , $\alpha > 0$ and $f(z) \in R_{p,\eta,\mu}^{\lambda,\delta}(\alpha,0;1-2\psi,-1) \ (0 \le \psi < 1)$, then $f(z) \in R_{p,\eta,\mu}^{\lambda,\delta}(\alpha,\rho;1-2\psi,-1)$ for |z| < R, where

$$R = \left(\sqrt{\left(\frac{\rho}{\alpha(p+\delta)}\right)^2 + 1} - \frac{\rho}{\alpha(p+\delta)}\right). \tag{3.8}$$

The bound R is the best possible.

Proof. Write

$$\left(\frac{z^p}{\mathbb{H}_{p,\eta,\mu}^{\lambda,\delta}f(z)}\right)^{\alpha} = \psi + (1-\psi)p(z).$$
(3.9)

Then, clearly, p(z) is of the form (2.1), analytic and has positive real part in \mathbb{U} . Differentiating (3.9) and using (1.3), we obtain

$$\frac{1}{1-\psi}\left(\chi(z)-\psi\right) = p(z) + \frac{\rho z p'(z)}{\alpha(p+\delta)}.$$
(3.10)

By making use of the following well-known estimate (see [5]):

$$\frac{|zp'(z)|}{Re\{p(z)\}} \le \frac{2r}{1-r^2} \quad (|z| = r < 1)$$

(3.10) leads to

$$Re\left(\frac{1}{1-\psi}\left\{\chi(z)-\psi\right\}\right) \ge Re\left\{p(z)\right\}\left(1-\frac{2\rho r}{\alpha(p+\delta)(1-r^2)}\right). \tag{3.11}$$

It is seen that the right-hand side of (3.11) is positive, provided that r < R, where R is given by (3.8).

In order to show that the bound R is the best possible, we consider the function $f(z) \in \mathbb{A}(p)$ defined by

$$\left(\frac{z^p}{\mathbb{H}_{p,n,\mu}^{\lambda,\delta}f(z)}\right)^{\alpha} = \psi + (1 - \psi)\left(\frac{1+z}{1-z}\right).$$

Noting that

$$\frac{1}{1-\psi} \left\{ (1+\rho) \left(\frac{z^p}{\mathbb{H}_{p,\eta,\mu}^{\lambda,\delta} f(z)} \right)^{\alpha} - \rho \left(\frac{\mathbb{H}_{p,\eta,\mu}^{\lambda,\delta+1} f(z)}{\mathbb{H}_{p,\eta,\mu}^{\lambda,\delta} f(z)} \right) \left(\frac{z^p}{\mathbb{H}_{p,\eta,\mu}^{\lambda,\delta} f(z)} \right)^{\alpha} - \psi \right\}$$

$$= \frac{1+z}{1-z} + \frac{2\rho z}{\alpha (p+\delta)(1-z)^2} = 0, \tag{3.12}$$

for |z| = R, we conclude that the bound is the best possible, which ends the proof of Theorem 5.

Theorem 6. Let $f(z) \in R_{p,n,\mu}^{\lambda,\delta}(\alpha,\rho;A,B)$ with $Re(\rho) > 0$. Then

$$f(z) = \left(z^{p} \left(\frac{1 + B\omega(z)}{1 + A\omega(z)}\right)^{\frac{1}{\alpha}}\right) * \left(z^{p} + \sum_{n=1}^{\infty} \frac{(1)_{n}(1 + p)_{n}(1 + p + \eta - \mu)_{n}}{(\delta + p)_{n}(p + 1 - \mu)_{n}(1 + p - \lambda + \eta)_{n}} z^{p + n}\right),$$
(3.13)

where $\omega(z)$ is analytic function with $\omega(0) = 0$ and $|\omega(z)| < 1$.

Proof. Suppose that $f(z) \in R_{p,\eta,\mu}^{\lambda,\delta}(\alpha,\rho;A,B)$ with $Re(\rho) > 0$. It follows from (3.1) that

$$\left(\frac{z^p}{\mathbb{H}_{p,\eta,\mu}^{\lambda,\delta}f(z)}\right)^{\alpha} = \frac{1 + A\omega(z)}{1 + B\omega(z)},$$
(3.14)

that is,

$$\mathbb{H}_{p,\eta,\mu}^{\lambda,\delta}f(z) = z^p \left(\frac{1 + B\omega(z)}{1 + A\omega(z)}\right)^{\frac{1}{\alpha}}.$$
(3.15)

Combining (1.2) and (3.15), we have

$$\left(z^{p} + \sum_{n=1}^{\infty} \frac{(\delta+p)_{n}(p+1-\mu)_{n}(1+p-\lambda+\eta)_{n}}{(1)_{n}(1+p)_{n}(1+p+\eta-\mu)_{n}} z^{p+n}\right) * f(z) = z^{p} \left(\frac{1+B\omega(z)}{1+A\omega(z)}\right)^{\frac{1}{\alpha}}.$$
 (3.16)

The assertion (3.13) of Theorem 6 can now easily be derived from (3.16). **Theorem 7**. Let $f(z) \in R_{p,n,\mu}^{\lambda,\delta}(\alpha,\rho;A,B)$ with $Re(\rho) > 0$. Then

$$\frac{1}{z^{p}} \left[(1 + Ae^{i\theta})^{\frac{1}{\alpha}} \left(z^{p} + \sum_{n=1}^{\infty} \frac{(\delta + p)_{n} (p + 1 - \mu)_{n} (1 + p - \lambda + \eta)_{n}}{(1)_{n} (1 + p)_{n} (1 + p + \eta - \mu)_{n}} z^{p+n} \right) \right]$$

$$*f(z) - z^{p} \left(1 + Be^{i\theta} \right)^{\frac{1}{\alpha}}$$

$$\neq 0 \quad (0 < \theta < 2\pi). \tag{3.17}$$

Proof. Suppose that $f(z) \in R_{p,\eta,\mu}^{\lambda,\delta}(\alpha,\rho;A,B)$ with $Re(\rho) > 0$. We know that (3.1) holds, implying that

$$\left(\frac{z^p}{\mathbb{H}_{p,\eta,\mu}^{\lambda,\delta}f(z)}\right)^{\alpha} \neq \frac{1 + Ae^{i\theta}}{1 + Be^{i\theta}} \quad (0 < \theta < 2\pi).$$
(3.18)

It is easy to see that the condition (3.18) can be written as follows:

$$\frac{1}{z^p} \left[\mathbb{H}_{p,\eta,\mu}^{\lambda,\delta} f(z) \left(1 + Ae^{i\theta} \right)^{\frac{1}{\alpha}} - z^p \left(1 + Be^{i\theta} \right)^{\frac{1}{\alpha}} \right] \neq 0 \quad (0 < \theta < 2\pi). \tag{3.19}$$

Combining (1.2) and (3.19), we easily get the convolution property (3.17).

Theorem 8. Let $\rho_2 \ge \rho_1 \ge 0$ and $-1 \le B_1 \le B_2 < A_2 \le A_1 \le 1$. Then

$$R_{p,\eta,\mu}^{\lambda,\delta}(\alpha,\rho_2;A_2,B_2) \subset R_{p,\eta,\mu}^{\lambda,\delta}(\alpha,\rho_1;A_1,B_1). \tag{3.20}$$

Proof. Suppose that $f(z) \in R_{p,\eta,\mu}^{\lambda,\delta}(\alpha,\rho_2;A_2,B_2)$. We have

$$(1+\rho_2)\left(\frac{z^p}{\mathbb{H}^{\lambda,\delta}_{p,\eta,\mu}f(z)}\right)^{\alpha}-\rho_2\left(\frac{\mathbb{H}^{\lambda,\delta+1}_{p,\eta,\mu}f(z)}{\mathbb{H}^{\lambda,\delta}_{p,\eta,\mu}f(z)}\right)\left(\frac{z^p}{\mathbb{H}^{\lambda,\delta}_{p,\eta,\mu}f(z)}\right)^{\alpha}\prec\frac{1+A_2z}{1+B_2z}.$$

As $-1 \le B_1 \le B_2 < A_2 \le A_1 \le 1$, we easily find that

$$(1 + \rho_2) \left(\frac{z^p}{\mathbb{H}_{p,\eta,\mu}^{\lambda,\delta} f(z)} \right)^{\alpha} - \rho_2 \left(\frac{\mathbb{H}_{p,\eta,\mu}^{\lambda,\delta+1} f(z)}{\mathbb{H}_{p,\eta,\mu}^{\lambda,\delta} f(z)} \right) \left(\frac{z^p}{\mathbb{H}_{p,\eta,\mu}^{\lambda,\delta} f(z)} \right)^{\alpha}$$

$$\prec \frac{1 + A_2 z}{1 + B_2 z} \prec \frac{1 + A_1 z}{1 + B_1 z}, \tag{3.21}$$

which means that $f(z) \in R_{p,\eta,\mu}^{\lambda,\delta}(\alpha,\rho_2;A_1,B_1)$. Thus the assertion (3.20) holds for $\rho_2 = \rho_1 \geq 0$. If $\rho_2 > \rho_1 \geq 0$, by Theorem 1 and (3.21), we know that $f(z) \in R_{p,\eta,\mu}^{\lambda,\delta}(\alpha,0;A_1,B_1)$, that is,

$$\left(\frac{z^p}{\mathbb{H}_{p,n,u}^{\lambda,\delta}f(z)}\right)^{\alpha} \prec \frac{1+A_1z}{1+B_1z}.$$
(3.22)

At the same time, we have

$$(1+\rho_1)\left(\frac{z^p}{\mathbb{H}^{\lambda,\delta}_{p,\eta,\mu}f(z)}\right)^{\alpha} - \rho_1\left(\frac{\mathbb{H}^{\lambda,\delta+1}_{p,\eta,\mu}f(z)}{\mathbb{H}^{\lambda,\delta}_{p,\eta,\mu}f(z)}\right)\left(\frac{z^p}{\mathbb{H}^{\lambda,\delta}_{p,\eta,\mu}f(z)}\right)^{\alpha}$$

$$\rho_1 = \left(z^p\right)^{\alpha} \quad \rho_1 \left[(1+\rho_2)\left(\frac{z^p}{\mathbb{H}^{\lambda,\delta}_{p,\eta,\mu}f(z)}\right)^{\alpha}\right]$$

$$= (1 - \frac{\rho_1}{\rho_2}) \left(\frac{z^p}{\mathbb{H}_{p,\eta,\mu}^{\lambda,\delta} f(z)} \right)^{\alpha} + \frac{\rho_1}{\rho_2} \begin{bmatrix} (1 + \rho_2) \left(\frac{z^p}{\mathbb{H}_{p,\eta,\mu}^{\lambda,\delta} f(z)} \right)^{\alpha} \\ -\rho_2 \left(\frac{\mathbb{H}_{p,\eta,\mu}^{\lambda,\delta+1} f(z)}{\mathbb{H}_{p,\eta,\mu}^{\lambda,\delta} f(z)} \right) \left(\frac{z^p}{\mathbb{H}_{p,\eta,\mu}^{\lambda,\delta} f(z)} \right)^{\alpha} \end{bmatrix}. \quad (3.23)$$

Moreover

$$0 \le \frac{\rho_1}{\rho_2} < 1,$$

and the function $\frac{1+A_1z}{1+B_1z}$ ($-1 \le B_1 < A_1 \le 1$; $z \in \mathbb{U}$) is analytic and convex in \mathbb{U} . Combining (3.21) - (3.23) and Lemma 4, we find that

$$(1+\rho_1)\left(\frac{z^p}{H_{p,\eta,\mu}^{\lambda,\delta}f(z)}\right)^{\alpha}-\rho_1\left(\frac{H_{p,\eta,\mu}^{\lambda,\delta+1}f(z)}{H_{p,\eta,\mu}^{\lambda,\delta}f(z)}\right)\left(\frac{z^p}{H_{p,\eta,\mu}^{\lambda,\delta}f(z)}\right)^{\alpha}\prec\frac{1+A_1z}{1+B_1z},$$

which means that $f(z) \in R_{p,\eta,\mu}^{\lambda,\delta}(\alpha,\rho_1;A_1,B_1)$, which implies that the assertion (3.20) of Theorem 8 holds.

Theorem 9. Let $f(z) \in R_{p,\eta,\mu}^{\lambda,\delta}(\alpha,\rho;A,B)$ with $\rho > 0$ and $-1 \le B < A \le 1$. Then

$$\frac{\alpha (p+\delta)}{\rho} \int_{0}^{1} \frac{1-Au}{1-Bu} u^{\frac{\alpha(p+\delta)}{\rho}-1} du < Re \left(\frac{z^{p}}{\mathbb{H}_{p,\eta,\mu}^{\lambda,\delta} f(z)}\right)^{\alpha}$$

$$< \frac{\alpha (p+\delta)}{\rho} \int_{0}^{1} \frac{1+Au}{1+Bu} u^{\frac{\alpha(p+\delta)}{\rho}-1} du. \tag{3.24}$$

The extremal function of (3.24), is given by

$$\mathbb{H}_{p,\eta,\mu}^{\lambda,\delta}F(z) = z^p \left(\frac{\alpha \left(p+\delta\right)}{\rho} \int_{0}^{1} \frac{1+Az^n u}{1+Bz^n u} u^{\frac{\alpha(p+\delta)}{\rho}-1} du\right)^{\frac{-1}{\alpha}}.$$
 (3.25)

Proof. Let $f(z) \in R_{p,\eta,\mu}^{\lambda,\delta}(\alpha,\rho;A,B)$ with $\rho > 0$. From Theorem 1, we know that (3.1) holds, which implies that

$$Re\left(\frac{z^{p}}{H_{p,\eta,\mu}^{\lambda,\delta}f(z)}\right)^{\alpha} < \sup_{z \in U} Re\left\{\frac{\alpha\left(p+\delta\right)}{\rho} \int\limits_{0}^{1} \frac{1 + Azu}{1 + Bzu} u^{\frac{\alpha\left(p+\delta\right)}{\rho} - 1} du\right\}$$

$$\leq \frac{\alpha (p+\delta)}{\rho} \int_{0}^{1} \sup_{z \in U} \Re\left(\frac{1+Azu}{1+Bzu}\right) u^{\frac{\alpha(p+\delta)}{\rho}-1} du$$

$$< \frac{\alpha (p+\delta)}{\rho} \int_{0}^{1} \frac{1+Au}{1+Bu} u^{\frac{\alpha(p+\delta)}{\rho}-1} du, \tag{3.26}$$

$$Re\left(\frac{z^{p}}{\mathbb{H}_{p,\eta,\mu}^{\lambda,\delta}f(z)}\right)^{\alpha} > \inf_{z \in U} Re\left\{\frac{\alpha\left(p+\delta\right)}{\rho} \int_{0}^{1} \frac{1+Azu}{1+Bzu} u^{\frac{\alpha(p+\delta)}{\rho}-1} du\right\}$$

$$\geq \frac{\alpha\left(p+\delta\right)}{\rho} \int_{0}^{1} \inf_{z \in U} Re\left(\frac{1+Azu}{1+Bzu}\right) u^{\frac{\alpha(p+\delta)}{\rho}-1} du$$

$$> \frac{\alpha\left(p+\delta\right)}{\rho} \int_{0}^{1} \frac{1-Au}{1-Bu} u^{\frac{\alpha(p+\delta)}{\rho}-1} du. \tag{3.27}$$

Combining (3.26) and (3.27), we get (3.24). By noting that the function $\mathbb{H}_{p,\eta,\mu}^{\lambda,\delta}F(z)$, defined by (3.25), belongs to the class $R_{p,\eta,\mu}^{\lambda,\delta}(\alpha,\rho;A,B)$, we obtain that equality (3.24) is sharp. This completes the proof of Theorem 9.

In a similar way, applying the method used in the proof of Theorem 9, we easily get the following result.

Corollary 3. Let $f(z) \in R_{p,\eta,\mu}^{\lambda,\delta}(\alpha,\rho;A,B)$ with $\rho > 0$ and $-1 \le A < B \le$ 1. Then

$$\frac{\alpha \left(p+\delta\right)}{\rho} \int_{0}^{1} \frac{1+Au}{1+Bu} u^{\frac{\alpha(p+\delta)}{\rho}-1} du < \left(\frac{z^{p}}{\mathbb{H}^{\lambda,\delta}_{p,\eta,\mu}f(z)}\right)^{\alpha}$$

$$< \frac{\alpha \left(p+\delta\right)}{\rho} \int_{0}^{1} \frac{1-Au}{1-Bu} u^{\frac{\alpha(p+\delta)}{\rho}-1} du. \tag{3.28}$$

The extremal function of (3.28), is given by (3.25).

In view of Theorem 9 and Corollary 3, we easily derive the following dis-

tortion theorems for the class $R_{p,\eta,\mu}^{\lambda,\delta}(\alpha,\rho;A,B)$. Corollary 4. Let $f(z) \in R_{p,\eta,\mu}^{\lambda,\delta}(\alpha,\rho;A,B)$ with $\rho > 0$ and $-1 \le B < A \le 1$. Then for |z| = r < 1, we have

$$r^{p}\left(\frac{\alpha(p+\delta)}{\rho}\int_{0}^{1}\frac{1-Aur}{1-Bur}u^{\frac{\alpha(p+\delta)}{\rho}-1}du\right)^{\frac{1}{\alpha}}<\left|\mathbb{H}_{p,\eta,\mu}^{\lambda,\delta}f(z)\right|$$

$$< r^p \left(\frac{\alpha(p+\delta)}{\rho} \int_0^1 \frac{1+Aur}{1+Bur} u^{\frac{\alpha(p+\delta)}{\rho}-1} du \right)^{\frac{1}{\alpha}}. \tag{3.29}$$

The extremal function of (3.29) is defined by (3.25).

Corollary 5. Let $f(z) \in R_{p,\eta,\mu}^{\lambda,\delta}(\alpha,\rho;A,B)$ with $\rho > 0$ and $-1 \le A < B \le$ 1. Then for |z| = r < 1, we have

$$r^{p} \left(\frac{\alpha(p+\delta)}{\rho} \int_{0}^{1} \frac{1+Aur}{1+Bur} u^{\frac{\alpha(p+\delta)}{\rho}-1} du \right)^{\frac{1}{\alpha}} < \left| \mathbb{H}_{p,\eta,\mu}^{\lambda,\delta} f(z) \right|$$

$$< r^{p} \left(\frac{\alpha(p+\delta)}{\rho} \int_{0}^{1} \frac{1-Aur}{1-Bur} u^{\frac{\alpha(p+\delta)}{\rho}-1} du \right)^{\frac{1}{\alpha}}. \tag{3.30}$$

The extremal function of (3.30) is defined by (3.25).

By noting that

$$\left(Re\left(v\right)\right)^{\frac{1}{2}} \le Re\left(v^{\frac{1}{2}}\right) \le \left|v\right|^{\frac{1}{2}} \quad \left(v \in \mathbb{C}; Re\left(v\right) \ge 0\right). \tag{3.31}$$

We easily derive from Theorem 9 and Corollary 3 the following results.

Corollary 6. Let $f(z) \in R_{p,\eta,\mu}^{\lambda,\delta}(\alpha,\rho;A,B)$ with $\rho > 0$ and $-1 \le B < A \le$ 1. Then

$$\left(\frac{\alpha\left(p+\delta\right)}{\rho}\int_{0}^{1}\frac{1-Au}{1-Bu}u^{\frac{\alpha(p+\delta)}{\rho}-1}du\right)^{\frac{1}{2}} < Re\left(\frac{z^{p}}{\mathbb{H}_{p,\eta,\mu}^{\lambda,\delta}f(z)}\right)^{\frac{\alpha}{2}}$$

$$< \left(\frac{\alpha\left(p+\delta\right)}{\rho}\int_{0}^{1}\frac{1+Au}{1+Bu}u^{\frac{\alpha(p+\delta)}{\rho}-1}du\right)^{\frac{1}{2}}.$$

The extremal function is defined by (3.25).

Corollary 7. Let $f(z) \in R_{p,\eta,\mu}^{\lambda,\delta}(\alpha,\rho;A,B)$ with $\rho > 0$ and $-1 \le A < B \le$ 1. Then

$$\left(\frac{\alpha\left(p+\delta\right)}{\rho}\int_{0}^{1}\frac{1+Au}{1+Bu}u^{\frac{\alpha(p+\delta)}{\rho}-1}du\right)^{\frac{1}{2}} < Re\left(\frac{z^{p}}{\mathbb{H}_{p,\eta,\mu}^{\lambda,\delta}f(z)}\right)^{\frac{\alpha}{2}}$$

$$< \left(\frac{\alpha\left(p+\delta\right)}{\rho}\int_{0}^{1}\frac{1-Au}{1-Bu}u^{\frac{\alpha(p+\delta)}{\rho}-1}du\right)^{\frac{1}{2}}.$$

The extremal function is defined by (3.25).

Remarks

- (i) Using (1.4) instead of (1.3) in the above results, we get the corresponding results for the class $T_{p,\eta,\mu}^{\lambda,\delta}(\alpha,\rho;A,B)$; (ii) Taking $p=1,\delta=1,\mu=\lambda$ and $\lambda=\mu$, respectively, in the above
- (ii) Taking $p = 1, \delta = 1, \mu = \lambda$ and $\lambda = \mu$, respectively, in the above results, we obtain results corresponding to the operators $\mathbb{H}_{1,\eta,\mu}^{\lambda,\delta}f(z)$, $\mathbb{H}_{p,\eta,\mu}^{\lambda,1}f(z)$, $\mathbb{D}_p^{\lambda,\delta}f(z)$ and $\mathbb{D}_p^{\mu,\delta}f(z)$ given in the introduction.

Open Problem

The authors suggest to study these classes defined by the operator

$$\mathbb{I}_{p}^{\alpha} f(z) = \frac{(p+1)^{\alpha}}{z\Gamma(\alpha)} \int_{0}^{z} \left(\log \frac{z}{t}\right)^{\alpha-1} f(t) dt$$

$$= z^{p} + \sum_{n=1}^{\infty} \left(\frac{p+1}{n+p+1}\right)^{\alpha} a_{n+p} z^{n+p} \quad (p \in \mathbb{N}; \ \alpha > 0).$$

Acknowledgement. The authors are thankful to the referees for helpful suggestions.

References

- [1] M. K. Aouf, A. O. Mostafa and T. M. Seoudy, Subordination and Superordination Results for Analytic Functions Involving Certain Operators, Lambert Acad. Publishing, 2014.
- [2] M. K. Aouf, A. O. Mostafa and H. M. Zayed, Subordination and superordination properties of *p*-valent functions defined by a generalized fractional differintegral operator, Quaest. Math., (2015), 1-16.
- [3] T. Bulboaca, Differential Subordinations and Superordinations, Recent Results, House of Science Book Publ. Cluj-Napoca, 2005.
- [4] M.-S. Liu, On certain subclass of analytic functions, J. South China Normal Univ., 4(2002), 15-20 (in Chinese).
- [5] T.H. Macgregor, The radius of univalence of certain analytic functions, Proc. Amer. Math. Soc., 14(1963), 514-520.
- [6] S. S. Miller and P. T. Mocanu, Differential Subordinations: Theory and Applications, Series on Monographs and Textbooks in Pure and Applied Mathematics, Vol. 225, Marcel Dekker, New York and Basel, 2000.

- [7] S. S. Miller and P. T. Mocanu, Subordinants of differential superordinations, Complex Var. Theory Appl., 48(2003), no.10, 815-826.
- [8] T. M. Seoudy and M. K. Aouf, Subclasses of p-valent functions of bounded boundary rotation involving the generalized fractional differintegral operator, C. R. A. Cad. Sci. Paris, Ser. I, 351 (2013), 787-792.
- [9] T. N. Shanmugam, V. Ravichandran and S. Sivasubramanian, Differential Sandwich theorems for subclasses of analytic functions, Austral. J. Math. Anal. Appl., 3(2006), Art. 8, 1-11.
- [10] H. Tang, G.-T. Deng, S.-H. Li and M. K. Aouf, Inclusion results for certain subclasses of spiral-like multivalent functions involving a generalized fractional differintegral operator, Integral Transforms Spec. Funct., 24 (2013), no. 11, 873-883.