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Abstract

By making use of the principle of subordination between an-
alytic functions, we introduce non-Bazlevic classes of multivalent
functions defined by integral operator. Various results as subordi-
nation, superordination, sandwich type result and distortion theo-
rems are obtained.
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1 Introduction

Let H|a, k| be the class of analytic functions of the form:



2 Aouf, Mostafa and El-Hawsh

f(2) =a+ apz® + app 25 4 (z € 1),

and A(p) be the class of functions of the form

F(2) =22+ apena®t" (peN={1,2.}), (1.1)
n=1
which are analytic and p—valent in U = {z : |2] < 1}.

For two functions f(z) and ¢(z), analytic in U, we say that the function
f(z) is subordinate to g(z) in U, if there exists a Schwarz function w(z), which
is analytic in U with w(0) = 0 and |w(2)| < 1, f(2) = g(w(2)) (2 € U).

We denote this subordination by f(z) < g(z). Furthermore, if the function
g(z) is univalent in U, then we have the following equivalence (see for details
[1], [3] and [6]; see also [9] ):

f(2) < g(2) <= f(0) = g(0) and f(U) C g(U).

Let M be the class of functions ®(z) which are analytic and univalent in U
and for which ®(U) is convex with ®(0) = 1 and Re{ ®(2)} > 0.

Tang et al. [10] (see also Seoudy and Aouf [8], Aouf et al. [2]), defined the
operator H° = A(p) — A(p) by

pap
6+p A+p—pa+p+n—»N
H)\(s _Zp_'_ n n na an+n
pnu Z (Dn(14p)n(l4+p+n— ) P+
(mnmeRu<p+l;—co<A<n+p+1andd > —p). (1.2)

Specializing the parameters p, 1, 1, A and 9, we obtain various new operators,
for example,

6+1 —u%4@+n—Ahq .
= z+ An2
ji: n—1(2+ 10— 1)n—1

(06 > -1, n,uER,u<2, —o00 <A< n+2)

A3
Hlnu

~(I+p—wal+p+n—Aa,
HM f(2) = 2P+ ( Ay 2P
pnd (2) 2 (Dn(l+p+n—p)n

(mp € Rypu<p+l; —oco<A<n+p+1)

(0 + p (I+p—2X)
A0 _ A0 n n +n
Hymaf(2) = Dy f(e) =27+ Z Jn(1+ D) pin 2"

(6 > —p; —oo<)\<77+p+1),
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and

.0 _ s _ . — (0 +p)n(1+p = pin
ol 2 = B = +Z (T p)e 7

(b € R p<p+1; §>—p).

From (1.2), we can easily obtain the following identities:

A r_ AS+1 A8
z(Hmyuf(z)) = (0 +p)Hp,n,u (2) — 5Hp7n’uf(z) (1.3)
and
2HELf(2) = (00— NHyy L f(2) = (1= NHLEL F(2). (1.4)
Using the operator H):?  f(z) and for pe C, -1 < B < A <1, let:
(i) Ry (e, pi A, B) =
_ 2P @ . Hé,g}?f(@) < 2P >a
{ FeAp): X(Zl >+A_ (1+7) (H?:M(z)) P ( Hyeuf(2) ) \ RS, (2) } :
= 1+Bz’
(1.5)
(ii) T (e, p5 A, B) =
2P @ . H;;\,’g,uf(z) ) < 2P >cx
{ reap: 1++ j?z <—H3;}f <z>) P (H;,:}fﬂz) HY L F(2) } (1.6)
REEYZE

Throughout this paper unless otherwise stated the parameters 7, u, A, d, p, a, A
and B satisfy the constraints:

nu € R pu<p+l, —oco<A<n+p+1, d>—p,
0 < a<landpeN.

and all powers are understood as being principle values.

2 Preliminary results

In order to establish our main results, we need the following definition and
Lemmas.

Definition 3 [7]. Denote by £ the set of all functions f that are analytic
and injective on U\ E(f), where

B(f) = {g € OU - lim 1(2) = oo} ,
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and such that f/(£) # 0 for € € U\E(f).
Lemma 1[6]. Let h(z) be analytic and convex (univalent) in U with ~(0) =
1. Suppose also that the function g(z) given by

9(2) =1+ 2" + cppr 25+ L (2.1)

is analytic in U. If

B F AR (Re() > 0). (2.2

then

¥

g9(z) < q(z) = %z_f /h(t)tz_ldt =< h(z),

and ¢(z) is the best dominant of (2.2).
Lemma 2 [9]. Let ¢(z) be a convex univalent function in U and let o € C,
T € C* = C\{0} with

R (1 + Z;(S)) > max {0, —Re (g) } .

If the function g(z) is analytic in U and

=

09(z) + 729’ (2) < 0q(2) + 72¢'(2),

then g(z) < ¢(z) and ¢(z) is the best dominant.

Lemma 3 [7]. Let ¢(z) be convex univalent in U and m € C. Further
assume that Re(m) > 0. If g(z) € H[q(0),1] N L, and g(z) + mzg'(2) is
univalent in U, then

q(2) +mzq'(z) < g(2) +mzg'(2),

implies ¢(z) < ¢g(z) and ¢(z) is the best subordinant.
Lemma 4 [4]. let F' be analytic and convex in U. If f,g € A = A(1) and
f, g < F then

M(z)+(1=XNg(z) < F(z) (0<A<1).

3 Main results

In the remender of this paper, x(z) is given by (1.5).
Theorem 1. Let f(2) € R} (a,p; A, B) with Re (p) > 0. Then

P11

1

2P “ alp+9) [ 1+ Azu a<p+5) 1
Hpnuf(2) + zu

0
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1+ Az
3.1
= 14+ Bz (3.1)
and ¢(z) is the best dominant.
Proof. Let
&= (g ) (32)
g Z) = . .
Hiyin.uf (2)

Then ¢(z) is of the form (2.1) and is analytic in U. Differentiating (3.2) and
using (1.3), we get

(=) = 9(2) + Cfgf’—i;) (3.3)

As f(2) € R2S (a, p; A, B), we have

P11

pzg'(2) 1+ Az
() a(p+5)<1+Bz'

Applying Lemma 1 with v = @, we get
p @ —a(p Z a(p
( - ) <q(z) = 2P +0) zetzen / Lo Al sy
Hpnuf(2) P 0 1 + Bt
(p+6) [1+A4 14 A
a(p + 1+ Azu ety + Az
= P 34
p /1+Bzuu u_<1+Bz’ (34)
0
and ¢(z) is the best dominant, which ends the proof of Theorem 1.
Theorem 2. Let ¢(z) be univalent in U, p € C*, satisfies
" 5
Re (1 + zq/ (2)) > max {O, —Re <M) } : (3.5)
q'(2) p
If f(2) € A(p) satisfies
pzq'(2)
=< + 3.6
x(z) < q(z) 2+ ) (3.6)
then
() <o
—5 - | =az),
Hzguf(z)

and ¢(z) is the best dominant.
Proof. Let g(z) be defined by (3.2), then (3.3) holds. Combining (3.3)
and (3.6), we fined that

(z)+cf(;9—f§)>< (2) Of(';q—;(%. (3.7)
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By using Lemma 2 and (3.7), we easily get the assertion of Theorem 2.
1+ A
Taking ¢(z) = ] j: BZ (=1 < B < A<1)in Theorem 2, we get the follow-
z

ing result.
Corollary 1. Let p e C* and —1 < B < A <1, such that

e (2522) > max o (S50,

If f(z) € A(p) satisfies
1+ Az p(A—B)z
x(z) < 1+ Bz alp+9)(1+ Bz)?

then
( 2P )a . 1+ Az
Hyonuf (2) 1+ Bz’

A
“ is the best dominant.
14+ Bz
Theorem 3. Let ¢(z) be convex univalent in U with Re (p) > 0. Also let

(ﬁﬁ§ﬁ5>a€ﬂhmxumc

and

and x(z) be univalent in U. If
pzq ()
o) + L0 <),

then
= (s )
q\z W S )
Hz);fgw (Z)

and the function ¢(z) is the best subdominant.
Proof. Let g(z) be defined by (3.2). Then

pzq'(2) - pzg'(2)
(2) + alp+9) < x(2) = g(2) alp+o)

Applying Lemma 3 yields the assertion of Theorem 3.
1+ A
Az (=1 < B < A<1)in Theorem 3, we get the follow-

Taking ¢(z) = T B>

ing result.
Corollary 2. Let ¢(z) be convex univalent in U and -1 < B < A <1

with Re(p) > 0. Also let

(my € H[q(0),1] N L,
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and x(z) be univalent in U. If

1+ Az N p(A—B)z
1+ Bz a(p+0)(1+ Bz)?

1+ Az . ( 2P )a
1+ Bz Hﬁfgwf(z) ’

is the best subdominant.

< x(2),

then

and the function

+ A
14+ Bz
Combining Theorem 2 and Theorem 3, we easily get the following ”Sand-
wich type result”.
Theorem 4. Let ¢(z) be convex univalent, g2(2z) be univalent in U and

satisfies (3.5) with p € C*. If

(Wf—p@>a € Hlg(0),1]N L,

U

and x(z) is univalent in U, and if also

q(2) + % < x(2) = q(z) +

then
zp

02 < (H—f()) e

and ¢1(z) and go(z) are the best subordinant and dominant respectively.
Theorem 5. If p, « > 0 and f(z) € R} (a,0;1—2¢,—1) (0 < < 1),

b
then f(z) € R)? (a,p;1 —2¢, —1) for |z| < R, where
p p
R = —_— ] Fl1=—. 3.8
<Oé(p+5)> a(p+9) 39

The bound R is the best possible.
Proof. Write

(—()) (- el (39)

SW)
HP,U’H

Then, clearly, p(z) is of the form (2.1), analytic and has positive real part in
U. Differentiating (3.9) and using (1.3), we obtain

1 _ pzp'(2)
-0 (x(2) —¥) =p(z) + alp+0)’ (3.10)
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By making use of the following well-known estimate (see [5]):

12p'(2)] 2r
Re {p(2)} = 1—r2

(sl =r < 1)
(3.10) leads to
Re (ﬁ {x(z) - w}) > Re {p(=)} (1 ST ?f(l - TQ)) SCHRY

It is seen that the right-hand side of (3.11) is positive, provided that r < R,
where R is given by (3.8).

In order to show that the bound R is the best possible, we consider the
function f(z) € A(p) defined by

2P ¢ 142
(r7m) —rro-os)
Noting that

1 2P ° Hyo b f(2) 2P °
1—¢ {(Hp ) (Hﬁji,uf(z)) -’ (Héﬁuf@)) <H2:$,Mf(z>> w}

1+ + 2pz
T 1l-z  a(p+o)(1—2)?
for |z| = R, we conclude that the bound is the best possible, which ends the

proof of Theorem 5.
Theorem 6. Let f(2) € R (a, p; A, B) with Re(p) > 0. Then

P11

1
1+ Bw(z)\ On (A +P)n(+ptn—mn ___ptn
o= (Zp (1 —i—Aw(Z)) > " (Z”Z (5+p)n p+zf ) <’i+Z s
(3.13)

— 0, (3.12)

where w(z) is analytic function with w(0) =0 and |w(z)| < 1.
Proof. Suppose that f(z) € RN (a, p; A, B) with Re(p) > 0. It follows

from (3.1) that Psf
B 1O

<H?$u (z)> ~ 1+ Bw(z) (3.14)
that is, |
1+ B o

Hnaf () = (ﬂTjég) ‘ (3.15)

Combining (1.2) and (3.15), we have

©© 1
P (0+p)n (P+1-1),, (1+P=A+0)n _p+n o (1+Bw(z)\*
(z + W (1tp)n (Atptn—pin ~ ) * f(z) =2 (—1 Au(2) . (3.16)

n=1



Non-Bazilevic Results for Classes of Multivalent Functions 9

The assertion (3.13) of Theorem 6 can now easily be derived from (3.16).
Theorem 7. Let f(z2) € R} («,p; A, B) with Re(p) > 0. Then

P

1 o0 1— _
1| (14 Ae?)e (zp—i— 3 (O +p)n(p+ 1), (L+p )‘+77)"Zp+n)

iz (Wn(@+p)a(l+p+n— pt)n
xf(z) — 2P (1 + Bew)a

zp

#0 (0<6<2m). (3.17)

Proof. Suppose that f(z) € Rg’f],u(a,p;A, B) with Re(p) > 0. We know
that (3.1) holds, implying that

2 * 14 Ae
. 0<0<2m). 3.18
<Hﬁ,’f§,uf (z)> F 1 pen | ) (3.18)

It is easy to see that the condition (3.18) can be written as follows:

e [H/\"s fz) (1+ Aew)é — 2P (1+ Beie)é] #0 (0<éf<2m). (3.19)

Zp YUPE

Combining (1.2) and (3.19), we easily get the convolution property (3.17).
Theorem 8. Let po > p; > 0and —1 < By < By < Ay < A; < 1. Then

RA,a (QJPQ;A%B?) - R/\,é (a7p1;AlvBl>‘ (320)

P11 Py,

Proof. Suppose that f(z) € RN (a, pa; Az, By). We have

Py

2P “ HOTLf (2 2P Y1+ Agz
e (i) = () () <
Hpnuf(2) Hpnuf(2) o f (2) 1+ Byz

As —1 < By < By < Ay < A; <1, we easily find that

# N\ (HEE ) Y
(1+p2) (H—f()) 2 (H ) ) (sz:i,mz))

].-f-AgZ < 1+A12
1+BQZ 1+B127

which means that f(z) € R)? (e, p2; A1, Br). Thus the assertion (3.20) holds
for po = p1 > 0. If po > p; > 0, by Theorem 1 and (3.21), we know that

f(z) € RN (a,0; Ay, By), that is,

Py

PN 14 A

(%) <A (3.22)
Hpn.uf (2) 1+ B2

(3.21)
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At the same time, we have

oD « )\ 6+1f(2) ( P ) «
14 A 2y
(1+21) (Hzguf(z)) . (Hzéguf(z) ) Hgg,uf(z)

P @ (L4 p2) < = )
=00 () * 0| L i e | 63
2 K z 2 _ D,1, 1 z

Pk P2 (H;Wf(z>> (Hﬁ:&ﬁ(@)

Moreover
0< ! <1,
P2

1+ A

and the function i B1Z (-1 < By < A; <1; z € U) is analytic and convex
17

in U. Combining (3.21) — (3.23) and Lemma 4, we find that

2P @ H)2f(z) 2P C14+ Az
(14 p1) (T) —p| s ( A0 ) ~1 B1 ’
Hpnuf(2) Hpinuf(2) Hpnuf(2) + 512

which means that f(z) € Rgg (@, p1; Ay, By), which implies that the assertion
(3.20) of Theorem 8 holds.
Theorem 9. Let f(2) € R)° (o, p; A, B) with p>0and —1< B < A<

P
1. Then

1
1—Au o P “
a(p+5)/ Y (jé)_ldu<R€(‘>\62 )
p ) 1— Bu Hpn. . f(2)

P11

1
e / LA 2y, (3.24)

p 1+Buu
0

The extremal function of (3.24), is given by

=1
1 a

p—|—5 /1+Az u a(pp+6>_1du _ (3.25)

H)? F(2) = 2P
() 1+ Bz"u

P11

0

Proof. Let f(z) € R)® (a, p; A, B) with p > 0. From Theorem 1, we know

P11
that (3.1) holds, which implies that

1

p “ 5) [1+A e
Re (%) < sup Re alp+ / + Az 3 “du
Hpinuf (2) zeU I+ Bau'

0
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§) [1+Au aw
oz(pp+ )/1132 aetd) “Lu, (3.26)
0
4] / A
P o ) .
e <+> > inf Red 2P )/ AR AR
5) | y
1 alp
> M/inf Re <M) L2
P =€l 1+ Bzu
) / A
1-— alp
a(p+ )/1 Buu%*ldu. o)
P — Bu

0

Combining (3.26) and (3.27), we get (3.24). By noting that the function
H F(z), defined by (3.25), belongs to the class R)? (a,p; A, B), we ob-
tain that equality (3.24) is sharp. This completes the proof of Theorem 9.

In a similar way, applying the method used in the proof of Theorem 9, we
easily get the following result.

Corollary 3. Let f(z) € R) (a,p; A, B) with p>0and ~1< A< B <

D1,
1. Then
1

p—|—5 / 14+ Au ow+d) < 2P )O‘
u- e du < ey o
1+ Bu Hynuf(2)

0

1
J 1 — Au aw
alp+ )/ Y (3.28)
p 1—Bu

0

The extremal function of (3.28), is given by (3.25).

In view of Theorem 9 and Corollary 3, we easily derive the following dis-
tortion theorems for the class R0 (a, p; A, B).
Corollary 4. Let f(z) € R} («, p,A B) withp>0and -1 < B< A<1.

Pk
Then for |z| = r < 1, we have

o

1
a(p+6) [ 1—Aur, 2@E)_ W)
o (e [ ) < )
0
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Q=

1
p | alp+d) 14 Aur 220y
<r > /HBWU P du | . (3.29)
0

The extremal function of (3.29) is defined by (3.25) .
) €

Corollary 5. Let f(z Rg))‘f]“(a,p; A, B)withp>0and -1< A< B<
1. Then for |z| = r < 1, we have

1 o
(p+9) Aur, 22ty
w0, [t | < |8, 00
0
p*‘” dury S5 gy | (3.30)
The extremal function of (3.30) is defined by (3.25) .
By noting that
(Re (v))? < Re (v%) <|v]* (veC;Re(v)>0). (3.31)

We easily derive from Theorem 9 and Corollary 3 the following results

Corollary 6. Let f(z) € Rﬁfzu(a,p;A, B)withp>0and - 1< B< AL
1. Then

1
1

a(p+9) / 1- Auua<pp+6)_1du < Re < sz >2
P 1 = Bu Hpnf (2)

2
a(p+5)/1+Au alotd)
p 1+ Bu

The extremal function is defined by (3.25).

Corollary 7. Let f(z) € R;fw(a,p;A, B) withp>0and -1 <A< B<
1. Then

2

1 o
e / 1+Auua(pp+6)_1du <R6( Aaz'p )2
P , 1+ Bu Hp 0 f (2)

1
1

2
p—|—5 /l—Au alotd)
u
1— Bu

0
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The extremal function is defined by (3.25).

Remarks

(1) Using (1.4) instead of (1.3) in the above results, we get the corresponding
results for the class Tzf:;iu(oz, p; A, B);

(ii) Taking p = 1,6 = 1,4 = X and A = p, respectively, in the above
results, we obtain results corresponding to the operators Hi\g WS (2), H;}% WS(2),
D) f(z) and DA f(z) given in the introduction.

Open Problem

The authors suggest to study these classes defined by the operator

z

L) = LI (e 2)"

o 1 (03
= 2P+ Z (L) anipz" P (pEN; a>0).

Acknowledgement. The authors are thankful to the referees for helpful
suggestions.
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