Int. J. Open Problems Complex Analysis, Vol. 1, No. 1, June 2009 ISSN 2074-2827; Copyright ©ICSRS Publication, 2009 www.i-csrs.org

Radius Problems of Certain Analytic Functions

Hiro Kobashi, Kazuo Kuroki, Hitoshi Shiraishi and Shigeyoshi Owa

Department of Mathematics, Kinki University, Higashi-Osaka, Osaka 577-8502, Japan

e-mail: hero_of_earth_oo1@hotmail.com, freedom@sakai.zaq.ne.jp step_625@hotmail.com, owa@math.kindai.ac.jp

Abstract

For analytic functions f(z) normalized by f(0)=0 and f'(0)=1 in the open unit disk \mathbb{U} , a class $P_4(\lambda)$ of f(z) defined by some inequality for f(z) is introduced. In the present paper, we discuss the problem such that $\frac{1}{\alpha}f(\alpha z)\in P_4(\lambda)$ for $f(z)\in \mathcal{S}$. Also for our result, an open problem concern in Hölder inequality is given.

Keywords: Analytic function, univalent function, Caushy-Schwarz inequality, Hölder inequality.

2000 Mathematics Subject: Primary 30C45.

1 Introduction

Let \mathcal{A} be the class of functions f(z) of the form

$$f(z) = z + \sum_{n=2}^{\infty} a_n z^n \tag{1.1}$$

which are analytic in the open unit disk $\mathbb{U} = \{z \in \mathbb{C} : |z| < 1\}$. Let \mathcal{S} be the subclass of \mathcal{A} consisting of all univalent functions f(z) in \mathbb{U} . For $f(z) \in \mathcal{A}$, we say that $f(z) \in P_4(\lambda)$ if f(z) satisfies $\frac{f(z)}{z} \neq 0$ $(z \in \mathbb{U})$ and

$$\left| \left(\frac{z}{f(z)} \right)^{""} \right| \le \lambda \qquad (z \in \mathbb{U}) \tag{1.2}$$

for some real $\lambda > 0$. Obradović and Ponnusamy [2] have studied the subclass $P_2(\lambda)$ of \mathcal{A} consisting of f(z) satisfying $\frac{f(z)}{z} \neq 0$ $(z \in \mathbb{U})$ and

$$\left| \left(\frac{z}{f(z)} \right)'' \right| \le \lambda \qquad (z \in \mathbb{U}) \tag{1.3}$$

for some real $\lambda > 0$.

Let us consider a function f(z) given by

$$f(z) = \frac{z}{(1-z)^{\delta}} \qquad (\delta \ge 0). \tag{1.4}$$

Then, we see that $\frac{f(z)}{z} = \frac{1}{(1-z)^{\delta}} \neq 0$ $(z \in \mathbb{U})$,

$$\left| \left(\frac{z}{f(z)} \right)'' \right| = \left| \delta(\delta - 1)(1 - z)^{\delta - 2} \right| < \delta(\delta - 1)2^{\delta - 2}$$
 (1.5)

for $\delta \geq 2$, and

$$\left| \left(\frac{z}{f(z)} \right)'''' \right| = \left| \delta(\delta - 1)(\delta - 2)(\delta - 3)(1 - z)^{\delta - 4} \right| < \delta(\delta - 1)(\delta - 2)(\delta - 3)2^{\delta - 4}$$
 (1.6)

for $\delta \ge 4$. Therefore, Koebe function $f(z) = \frac{z}{(1-z)^2}$ belongs to $P_2(2)$ and $P_4(\lambda)$ for any $\lambda > 0$.

If we consider

$$f(z) = \frac{z}{\sum_{k=0}^{n} z^k},$$

then

$$\left| \left(\frac{z}{f(z)} \right)^{m} \right| = \left| \sum_{k=4}^{n} \frac{k!}{(k-4)!} z^{k-4} \right| < \sum_{k=4}^{n} \frac{k!}{(k-4)!} = \frac{(n-3)(n-2)(n-1)n(n+1)}{5}.$$

Therefor
$$f(z) \in P_4\left(\frac{(n-3)(n-2)(n-1)n(n+1)}{5}\right)$$
.

2 Main result

To consider our problem for the class $P_4(\lambda)$, we need the following lemma due to Goodman [1].

Lemma 1 If $f(z) \in \mathcal{S}$ and

$$\frac{z}{f(z)} = 1 + \sum_{n=1}^{\infty} b_n z^n,$$
(2.1)

then we have

$$\sum_{n=1}^{\infty} (n-1) |b_n|^2 \le 1. \tag{2.2}$$

Further, we need the following lemma.

Lemma 2 Let $f(z) \in \mathcal{A}$ and $\frac{z}{f(z)} = 1 + \sum_{n=1}^{\infty} b_n z^n \neq 0$ $(z \in \mathbb{U})$. If f(z) satisfies

$$\sum_{n=4}^{\infty} \frac{n!}{(n-4)!} |b_n| \le \lambda, \tag{2.3}$$

then $f(z) \in P_4(\lambda)$.

Proof. We note that

$$\left| \left(\frac{z}{f(z)} \right)^{\prime\prime\prime\prime} \right| < \sum_{n=4}^{\infty} \frac{n!}{(n-4)!} \left| b_n \right|. \tag{2.4}$$

Thus, if f(z) satisfies the inequality (2.3), then $f(z) \in P_4(\lambda)$.

Now, we derive

Theorem 1 Let $f(z) \in \mathcal{S}$ and $\alpha \in \mathbb{C}$ ($|\alpha| < 1$). Then the function $\frac{1}{\alpha}f(\alpha z)$ belongs to the class $P_4(\lambda)$ for $0 < |\alpha| \leq |\alpha_0(\lambda)|$, where $|\alpha_0| = |\alpha_0(\lambda)|$ is the smallest root of the equation

(2.5)
$$\lambda^{2} |\alpha|^{16} - (8\lambda^{2} + 288)|\alpha|^{14} + (28\lambda^{2} - 2496)|\alpha|^{12} - (56\lambda^{2} + 2064)|\alpha|^{10} + (70\lambda^{2} - 192)|\alpha|^{8} - 56\lambda^{2}|\alpha|^{6} + 28\lambda^{2}|\alpha|^{4} - 8\lambda^{2}|\alpha|^{2} + \lambda^{2} = 0$$

in $0 < |\alpha| < 1$.

Proof. Since $\frac{z}{f(z)} \neq 0$ $(z \in \mathbb{U})$ for $f(z) \in \mathcal{S}$, if we write

$$\frac{z}{f(z)} = 1 + \sum_{n=1}^{\infty} b_n z^n,$$

then

$$\frac{z}{\frac{1}{\alpha}f(\alpha z)} = 1 + \sum_{n=1}^{\infty} \alpha^n b_n z^n$$
 (2.6)

for $0 < |\alpha| < 1$. It follows that

$$\sum_{n=4}^{\infty} (n-1) |b_n|^2 \le \sum_{n=1}^{\infty} (n-1) |b_n|^2 \le 1$$
 (2,7)

from Lemma 1. To show that $\frac{1}{\alpha}f(\alpha z)\in P_4(\lambda)$, we have to prove that

$$\sum_{n=4}^{\infty} \frac{n!}{(n-4)!} |\alpha^n b_n| \le \lambda \tag{2.8}$$

by means of Lemma 2. Indeed, applying the Cauchy-Schwarz inequality for the left hand of (2.8), we obtain that

$$\sum_{n=4}^{\infty} \frac{n!}{(n-4)!} |\alpha^n b_n| = \sum_{n=4}^{\infty} \left(n^2 (n-1)(n-2)^2 (n-3)^2 |\alpha|^{2n} \right)^{\frac{1}{2}} \left((n-1)|b_n|^2 \right)^{\frac{1}{2}} \\
\leq \left(\sum_{n=4}^{\infty} n^2 (n-1)(n-2)^2 (n-3)^2 |\alpha|^{2n} \right)^{\frac{1}{2}} \left(\sum_{n=4}^{\infty} (n-1)|b_n|^2 \right)^{\frac{1}{2}} \\
\leq \left(\sum_{n=4}^{\infty} n^2 (n-1)(n-2)^2 (n-3)^2 |\alpha|^{2n} \right)^{\frac{1}{2}} \\
= \frac{4|\alpha|^4 \sqrt{3(6|\alpha|^6 + 52|\alpha|^4 + 43|\alpha|^2 + 4)}}{(1-|\alpha|^2)^4}.(2.9)$$

Now, we consider the complex number α (0 < $|\alpha|$ < 1) such that

$$\frac{4|\alpha|^4 \sqrt{3(6|\alpha|^6 + 52|\alpha|^4 + 43|\alpha|^2 + 4)}}{(1 - |\alpha|^2)^4} = \lambda.$$
 (2.10)

This give that

$$h(|\alpha|) = \lambda^{2} |\alpha|^{16} - (8\lambda^{2} + 288)|\alpha|^{14} + (28\lambda^{2} - 2496)|\alpha|^{12} - (56\lambda^{2} + 2064)|\alpha|^{10} + (70\lambda^{2} - 192)|\alpha|^{8} - 56\lambda^{2}|\alpha|^{6} + 28\lambda^{2}|\alpha|^{4} - 8\lambda^{2}|\alpha|^{2} + \lambda^{2} = 0.$$

Noting that $h(0) = \lambda^2 > 0$ and h(1) = -5040 < 0, $h(|\alpha|) = 0$ has a root $|\alpha_0| = |\alpha_0(\lambda)|$ in $0 < |\alpha| < 1$. This completes the proof of the theorem.

Remark 1 If we take $\alpha = \frac{1}{2}e^{i\theta}$ in (2.5), then we have

$$\lambda = \frac{8\sqrt{386}}{27} = 5.821 \cdots.$$

If we put $\lambda = 1$ in (2.5), then we see that

$$|\alpha|^{16} + 280|\alpha|^{14} - 2468|\alpha|^{12} + 2008|\alpha|^{10} - 122|\alpha|^8 - 56|\alpha|^6 + 28|\alpha|^4 - 8|\alpha|^2 + 1 = 0$$

has a root $|\alpha_0|$ such that $0.414 < |\alpha_0| < 0.415$.

3 Open problem

For the proof of Theorem 1, we apply Cauchy-Schwarz inequality given by

$$\sum |a_n||b_n| \le \left(\sum |a_n|^2\right)^{\frac{1}{2}} \left(\sum |b_n|^2\right)^{\frac{1}{2}}.$$

But we know that Hölder inequality given by

$$\sum |a_n||b_n| \le \left(\sum |a_n|^p\right)^{\frac{1}{p}} \left(\sum |b_n|^q\right)^{\frac{1}{q}} \qquad \left(p > 0, q > 0, \frac{1}{p} + \frac{1}{q} \ge 1\right)$$

is the generalization inequality of Cauchy-Schwarz inequality. Therefore, if we find some application of Hölder inequality for the proof of Theorem 1 instead of Cauchy-Schwarz inequality, then we derive new result which is the generalization of Theorem 1.

References

- [1] A.W.Goodman, Univalent Functions, Vol.I and II, Mariner, Tampa, Florida, 1983.
- [2] M. Obradovć and S. Ponnusamy, Radius properties for subclasses of univalent functions, Analysis **25**(2005), 183-188.