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Abstract

Modified integral operators on Fox-Wright functions are
given. We determine conditions under which the partial sums
of this integral operator of bounded turning are also of bounded
turning. Further, an application of Cesáro means for this
class is illustrated.
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1 Introduction and Definitions

Let H be the class of functions analytic in U and H[a, n] be the subclass of H
consisting of functions of the form f(z) = a + anz

n + an+1z
n+1 + ... . Let A be

the subclass of H consisting of functions of the form

f(z) = z +
∞∑

n=2

anz
n, z ∈ U. (1.1)

Consider two functions f, g ∈ A, f(z) = z +
∑∞

n=2 anz
n and g(z) = z +∑∞

n=2 bnz
n. Then their convolution or Hadamard product f(z)∗g(z) is defined
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by

f(z) ∗ g(z) = z +
∞∑

n=2

anbnz
n, z ∈ U.

For several functions f1(z), ..., fm(z) ∈ A, we can write

f1(z) ∗ ... ∗ fm(z) = z +
∞∑

n=2

(a1n...amn)zn, , z ∈ U.

For complex parameters

α1, ..., αq (
αj

Aj

6= 0,−1,−2, ... ; j = 1, ..., q)

and

β1, ..., βp (
βj

Bj

6= 0,−1,−2, ... ; j = 1, ..., p),

we state the Fox-Wright generalization qΨp[z] of the hypergeometric qFp func-
tion (see [1-3])as

qΨp

 (α1, A1), ..., (αq, Aq);
z

(β1, B1), ..., (βp, Bp);

 =q Ψp[(αj, Aj)1,q; (βj, Bj)1,p; z]

:=
∞∑

n=0

Γ(α1 + nA1)...Γ(αq + nAq)

Γ(β1 + nB1)...Γ(βp + nBp)

zn

n!

=
∞∑

n=0

∏q
j=1 Γ(αj + nAj)∏p
j=1 Γ(βj + nBj)

zn

n!

where Aj > 0 for all j = 1, ..., q, Bj > 0 for all j = 1, ..., p and 1 +
∑p

j=1 Bj −∑q
j=1 Aj ≥ 0 for suitable values |z|. For the special case, where Aj = 1 for all

j = 1, ..., q, and Bj = 1 for all j = 1, ..., p the following relationship holds:

qFp(α1, ..., αq; β1, ..., βp; z) = ΩqΨp[(αj, 1)1,q; (βj, 1)1,p; z],

q ≤ p + 1; q, p ∈ N0 = N ∪ {0}, z ∈ U

where

Ω :=
Γ(β1)...Γ(βp)

Γ(α1)...Γ(αq)
.

Let

Φ(z) : = z qΨp[(αj, Aj)1,q; (βj, Bj)1,p; z] ∗...∗︸︷︷︸
k−times

z qΨp[(αj, Aj)1,q; (βj, Bj)1,p; z]

= z +
∞∑

n=2

[∏q
j=1 Γ(αj + (n− 1)Aj)∏p
j=1 Γ(βj + (n− 1)Bj)

1

(n− 1)!

]k

zn, k ∈ N0.
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We introduce a function [Φ(z)]−1 given by

Φ(z) ∗ [Φ(z)]−1 =
z

(1− z)λ+1

= z +
∞∑

n=2

(λ + 1)n−1

(n− 1)!
, (λ > −1)

and obtain the following generalized operator:

Ik
λ [(αj, Aj)1,q; (βj, Bj)1,p]f(z) = [Φ(z)]−1 ∗ f(z), (1.2)

where f ∈ A, z ∈ U and

[Φ(z)]−1 = z +
∞∑

n=2

[∏p
j=1 Γ(βj + (n− 1)Bj)∏q
j=1 Γ(αj + (n− 1)Aj)

(n− 1)!
]k (λ + 1)n−1

(n− 1)!
zn.

A computation gives us

Ik
λ [(αj, Aj)1,q; (βj, Bj)1,p]f(z) = z +

∞∑
n=2

[∏p
j=1 Γ(βj + (n− 1)Bj)∏q
j=1 Γ(αj + (n− 1)Aj)

(n− 1)!
]k

×(λ + 1)n−1

(n− 1)!
anz

n (1.3)

where (a)n is the Pochhammer symbol defined by

(a)n =
Γ(a + n)

Γ(a)
=

{
1, n = 0
a(a + 1)...(a + n− 1), n = {1, 2, ...}.

Remark 1.1. When k = 1, the operator (3) reduces to the integral operator
defined by the authors [4], and in fact, is a generalization of the Noor integral
operator defined by a hypergeometric functions [5]. Note also a special case of
the operator (3) can be found in [6] by Carlson and Shaffer.
The following result follows from (3:

Lemma 1.1. Let f ∈ A for all z ∈ U then

(1) I0
0 [(αj, Aj)1,q; (βj, Bj)1,p]f(z) = f(z).

(2) I0
1 [(αj, Aj)1,q; (βj, Bj)1,p]f(z) = zf ′(z).

For 0 ≤ µ < 1, let B(µ) denote the class of functions f of the form (1) so
that <{f ′} > µ in U. The functions in B(µ) are called functions of bounded
turning (c.f. [7, Vol. II]). Nashiro-Warschowski Theorem (see e.g. [7, Vol. I])
stated that the functions in B(µ) are univalent and also close-to-convex in U.
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In the sequel we need to the following results.

Lemma 1.2. [8] For z ∈ U we have

<
{ j∑

n=1

zn

n + 2

}
> −1

3
, (z ∈ U).

Lemma 1.3. [7, Vol. I ] Let P (z) be analytic in U, such that P (0) = 1, and
<(P (z)) > 1

2
in U . For functions Q analytic in U the convolution function

P ∗Q takes values in the convex hull of the image on U under Q.

2 Main results

To make use of Lemma 1.2 and Lemma 1.3, we illustrate the conditions under
which the m−th partial sums (4) of the integral operator (3) of bounded
turning are also of bounded turning. The m−th partial sums of the operators
(3) are given by

Pm(z) = z +
m∑

n=2

Hk
n−1

(λ + 1)n−1

(n− 1)!
anz

n, (z ∈ U), (2.1)

where

Hk
n−1 =

[∏p
j=1 Γ(βj + (n− 1)Bj)∏q
j=1 Γ(αj + (n− 1)Aj)

(n− 1)!
]k

Theorem 2.1. Assume that λ = 0 and Hk
n−1 > 1. Let f ∈ A. If 1

2
< µ < 1

and f(z) ∈ B(µ), then Pm(z) ∈ B
(

2+µ
3

)
.

Proof. Let f be of the form (1) and f(z) ∈ B(µ) that is

<{f ′(z)} > µ, (
1

2
< µ < 1, z ∈ U).

Implies

<{1 +
∞∑

n=2

nanz
n−1} > µ >

1

2
.

Now for 1
2

< µ < 1 we have

<
{

1 +
∞∑

n=2

an
n

1− µ
zn−1

}
> <

{
1 +

∞∑
n=2

nanz
n−1

}
.
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It is clear that

<
{

1 +
∞∑

n=2

nHk
n−1

1− µ
anz

n−1
}

>
1

2
. (2.2)

Applying the convolution properties of power series to P ′
m(z), we may write

P ′
m(z) = 1 +

m∑
n=2

Hk
n−1

(λ + 1)n−1

(n− 1)!
nanz

n−1

=
[
1 +

m∑
n=2

nHk
n−1

(1− µ)
anz

n−1
]
∗

[
1 +

m∑
n=2

(1− µ)zn−1
]

:= P (z) ∗Q(z).

(2.3)

In virtue of Lemma 1.2 and for j = m− 1, we obtain

<
{ k∑

n=2

zn−1

n + 1

}
≥ −1

3
. (2.4)

Since

<
{ k∑

n=2

zn−1
}
≥ <

{ k∑
n=2

zn−1

n + 1

}
. (2.5)

Then we have

<
{ k∑

n=2

zn−1
}
≥ −1

3
. (2.6)

A computation gives

<
{

Q(z)
}

= <
{

1 +
k∑

n=2

(1− µ)zn−1
}

>
2 + µ

3
.

On the other hand, the power series

P (z) =
[
1 +

m∑
n=2

nHk
n−1

(1− µ)
anz

n−1
]
, (z ∈ U)

satisfies: P (0) = 1 and

<
{

P (z)
}

= <
{

1 +
∞∑

n=2

nHk
n−1

1− µ
anz

n−1
}

>
1

2
, (z ∈ U).

Therefore, by Lemma 1.3, we have

<
{

P ′
m(z)

}
>

2 + µ

3
, (z ∈ U).
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This completes the proof of Theorem 2.1.

Next we determine the bounded turning for the Cesáro sums of order ν where
ν ∈ N ∪ {0} of the operator (3).

σν
m(z, Ik

λ [(αj, Aj)1,q; (βj, Bj)1,p]f(z)) = σν
m ∗ Ik

λ [(αj, Aj)1,q; (βj, Bj)1,p]f(z)

=
k∑

n=0

(
m− n + ν

m− n

)
(

m + ν
m

) [∏p
j=1 Γ(βj + (n− 1)Bj)∏q
j=1 Γ(αj + (n− 1)Aj)

(n− 1)!
]k (λ + 1)n−1

(n− 1)!
anz

n

(2.7)

where

(
a
b

)
= a!

b!(a−b)!
. We observe that

(
m− n + ν

m− n

)
(

m + ν
m

) =
m!(m− n + ν)!

(m− n)!(m + ν)!
≤ 1 (2.8)

for ν ≥ 0 and n = 0, 1, ...,m. In the same manner of Theorem 2.1, we pose
the following result.

Theorem 2.2. Let λ and Hk
n−1 as in Theorem 2.1. If 1

2
< µ < 1 and

f(z) ∈ B(µ), then σν
m(z, Ik

λ [(αj, Aj)1,q; (βj, Bj)1,p]f(z)) ∈ B
(

2+µ
3

)
.

In [9] the authors determined the Cesáro means for operators containing Fox-
Wright functions.

Theorem 2.3. Let fj(z) ∈ B(µ), j = 1, ...,m, 0 ≤ µ < 1. Then the arith-
metic mean of fj(z) defined by

F (z) =
1

m

m∑
j=1

fj(z), (z ∈ U)

is also in B(µ).

Proof. Since for all j = 1, ...,m,

<{f ′j(z)} > µ, (0 ≤ µ < 1, z ∈ U)

then

<{F ′(z)} =
1

m
<{

m∑
j=1

f ′j(z)} =
1

m

m∑
j=1

<{f ′j(z)} > µ.
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Hence F (z) ∈ B(µ).
In the same way of Theorem 2.3, we introduce the following result.

Theorem 2.4. Let fj(z) ∈ B(µ), j = 1, 2, 0 ≤ µ < 1. Then the weighted
mean of f1 and f2 defined by

Wm(z) =
1

2
[(1−m)f1(z) + (1 + m)f2(z)], (z ∈ U)

is also in B(µ).

3 Open Problem

The definitions and theorems we establish can be extended into N-symmetric
functions, N-conjugate symmetric functions and many others.
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