
Int. J. Advance. Soft Comput. Appl., Vol. 1, No. 1, July 2009 
ISSN 2074-8523; Copyright © ICSRS Publication, 2009 
www.i-csrs.org 
 
 

Intelligent Alert Clustering Model  

for Network Intrusion Analysis 
 

Maheyzah Md Siraj, Mohd Aizaini Maarof, and Siti Zaiton Mohd Hashim 
 

Faculty of Computer Science and Information Systems  
Universiti Teknologi Malaysia  

81310 Skudai Johor, MALAYSIA  
e-mail: {maheyzah, aizaini, sitizaiton}@utm.my 

 
 

Abstract 

     As security threats change and advance in a drastic way, most of 
the organizations implement multiple Network Intrusion Detection 
Systems (NIDSs) to optimize detection and to provide comprehensive 
view of intrusion activities. But NIDSs trigger a massive amount of 
alerts even for a day and overwhelmed security experts. Thus, 
automated and intelligent clustering is important to reveal their 
structural correlation by grouping alerts with common attributes. We 
propose a new hybrid clustering model based on Improved Unit 
Range (IUR), Principal Component Analysis (PCA) and 
unsupervised learning algorithm (Expectation Maximization) to 
aggregate similar alerts and to reduce the number of alerts. We 
tested against other unsupervised learning algorithms to validate the 
performance of the proposed model. Our empirical results show 
using DARPA 2000 dataset the proposed model gives better results in 
terms of the clustering accuracy and processing time. 

     Keywords: alert clustering, alert correlation, Expectation Maximization, 
Principal Component Analysis, unsupervised learning. 

1      Introduction 

Despite more than 20 years’ efforts on intrusion detection, no part of the Intrusion 
Detection System (IDS) is currently at a fully reliable level. Even though 
researchers are concurrently engaged in working on both detection and respond 
sides of the system, a major problem in the IDS is the guarantee for the intrusion 
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detection. This is the reason why in many cases IDS are used together with human 
experts (or analysts). In this way, IDS is actually helping the human security 
expert (SE) and it is not reliable enough to be trusted on its own.  

Network Intrusion Detection Systems (NIDSs) have been extensively used by 
researchers and practitioners to maintain trustworthiness in systems [1]. However, 
NIDSs usually generated thousands of alerts even for a day. Worse, those alerts 
are in low quality because they mixed with false positives, and repeated warnings 
for the same attack, or alert notifications from erroneous activity [2]. Therefore, 
manually analyze those alerts are tedious, time-consuming and error-prone [3]. 

A promising technique to automatically analyze the intrusion alerts is called 
correlation. In specific, Alert Correlation System (ACS) is post-processing 
modules that provide high-level insight on the security state of the network and 
filter false positives as well as redundant alerts efficiently from the output of 
NIDSs. The analyses from ACS actually become an important guidance for SE to 
plan and develop the responsive and preventive mechanisms. Moreover, 
automation of ACS is crucial not only because to achieve a reliable and accurate 
response plans, but to reveal the continuously changing attack strategies. 

Generally, correlation can be of two types: structural correlation and causal 
correlation. In this paper, we address the structural correlation (or alert clustering) 
aspect of NIDSs data to aggregate alerts with similar attributes. The main problem 
in existing ACSs is they require high levels of human involvement in creating the 
system and/or maintaining it, as patterns of attacks change as often as from month 
to month [4]. Our goal is to minimize the intervention (i.e., to ease the burden) of 
SE as much as possible, but not to replace them. In this paper we propose new, 
automated and intelligent hybrid clustering model called Improved Unit Range 
and Principal Component Analysis with Expectation Maximization (IPCA-EM) to 
aggregate similar alerts as well as to filter the low quality alerts. 

The following section presents the overview of some related researches and 
necessary background information in the area of intrusion alert correlation. 
Section 3 describes each component involved in our proposed approach. Section 4 
explains the dataset, experiments conducted followed by discussions of the results. 
Lastly, we conclude the paper and present potential future work.  

2      Related Work 

Most of the previous works [2], [3], [5], [6], [7] of alert clustering for finding 
structural correlation required strong dependencies on SE in developing and/or 
maintaining their correlation system. They either need pre-defined rules or human 
expert knowledge to manage and analyze the intrusion alerts. As a result, rules or 
knowledge for such systems need to be updated periodically as patterns of attacks 
change drastically.  
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In [3], Aggregation and Correlation Component (ACC) is proposed to group the 
alerts into situations based on any combination of the three attributes: source, 
target and alert class. ACC relies on a set of rules to cluster the alerts. Whilst in 
CRIM [6] and Rule-Based Temporal ACS [7], they implemented a knowledge-
based database to correlate and filter false positives alerts. Such database stored 
predicate logics to support logical reasoning in finding similarity between 
incoming alerts and existing alerts. In both cases, these approaches were time-
consuming since they required a large number of predefined rules/knowledge in 
order to correlate alerts. 

There are few works that cluster alerts based on supervised machine learning. For 
instance, algorithm introduced by [5] required a significant amount of alerts to be 
managed manually (i.e., hand-clustered) beforehand. Likewise, system by [2] 
required manual tuning periodically. Moreover, in their first system deployment, 
it needs to encode network properties to assist the clustering algorithm. Again, 
these approaches were time-consuming since regular setup and maintenance are 
significantly required for their system. Therefore, those constraints make the 
development of supervised learning-based correlation system less practical. 

The closest work to ours was by [4] which used Expectation Maximization (EM) 
clustering algorithm as well in their second stage of correlation. A major different 
is that we implemented Principal Component Analysis (PCA) to obtain better 
performance. Detail justifications on the implementation of PCA in our work are 
presented in the next section. 

3      Our Approach 
The goal of this work is to find the best integration of PCA and unsupervised 
learning algorithm for clustering intrusion alerts.  Our system architecture 
composed of six main components as illustrated in Fig. 1 (i.e., alert normalization, 
alert preprocessing, dimension reduction, alert clustering, alert ranking and 
verification, and alert reduction). In the first component, alerts that were 
generated by multiples NIDSs were collected and stored in database before they 
were modeled and converted into a standard format called Intrusion Detection 
Message Exchange Format (IDMEF). The formatted alerts were represented in 
numerical value and scaled to produce a balanced dataset. Since the number of 
alerts was huge and the alerts information was massive, we reduced the 
dimensionality of data using PCA. There were four unsupervised learning 
clustering algorithms tested. Among them, the EM gave better performance. 
Alerts in each cluster were ranked based on their severity level in order to 
discover the high and low risks of alerts. Based on the sensor’s signatures file, 
alerts were verified to determine the false positives and invalid alerts. In the last 
component, the system automatically merged redundant alerts, and discarded false 
positives and invalid alerts. 
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Fig. 1 : Our system architecture 

3.1      Alert modeling/normalization 

Recently, organizations use cooperative NIDSs to provide a better detection and 
global view of intrusion activities. This contributes to the diversity of output 
formats. In order to correlate alerts such diversified formats have to be converted 
into a unified standard representation. We applied IDMEF [8] to define the 
common data formats for the alerts. The IDMEF data model is implemented using 
a Document Type Definition (DTD) to describe Extensible Markup Language 
(XML) documents. IDMEF is also an object-oriented representation and a Unified 
Modeling Language (UML) model, as shown in Fig. 2 [8]. Whilst Table 1 shows 
the descriptions of each classes in IDMEF [8]. 

A sample of an alert in IDMEF is illustrated in Fig. 3. Referring to Fig. 3, the alert 
is uniquely identified by the ‘Alert ident’ attribute. The service section describes 
network services on targets. In this case, it contains two attributes, namely 
protocol (tcp) and port (22). The target node address is specified by the target 
element and the alert message is given by the Classification name attribute. This 
alert simply reports a stealth scan on port 22 from 135.013.216.191 to 
172.016.112.149. Note that stealth scan attack is a kind of scan that is designed to 
go undetected by auditing tools. So scanning very slowly becomes a stealth 
technique. 

 

 

 

 

 

 

 

 

 

 

Fig. 2 : IDMEF data model 
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Table 1: The IDMEF-Message classes 

 

We extracted nine attributes for each alert. Thus, a vector for an alert A = 
{SensorID, AlertID, SourceIPAddress,  DestinationIPAddress, SourcePort, 
DestinationPort, ServiceProtocol,  DetectTime, AlertType}. To manage all 
attributes in more manageable way each attribute is stored in a field. An example 
of an alert attributes in a database is illustrated in Table 2 and they are extracted 
from an XML document (as shown in Fig. 3). 

 
Table 2 : An example of an alert in database 

 
 

Class Description 
Alert Depending on the sensor, an Alert message may correspond to a single 

detected event or multiple detected events.  Alerts occur asynchronously in 
response to outside events. 

Analyser Identification information for the analyzer (i.e., sensor) that originated the 
alert. 

CreateTime The time the alert was created.  Of the three times that may be provided with 
an alert, this is the only one that is required. 

DetectTime The time the event(s) leading up to the alert was detected.  In the case of more 
than one event, the time the first event was detected.  In some circumstances, 
this may not be the same value as CreateTime. 

AnalyserTime The current time on the analyzer. 
Source  The source(s) of the event(s) leading up to the alert. 
Target The target(s) of the event(s) leading up to the alert. 

Classification The ‘name’ of the alert. 
Assessment Information about the impact of the event, actions taken by the analyzer in 

response to it, and the analyzer's confidence in its evaluation. 
*AddData AdditionalData - Information included by the analyzer that does not fit into 

the data model.  This may be an atomic piece of data, or a large amount of 
data provided through an extension to the IDMEF. 

Heartbeat Indicate analyzer current status.  Heartbeats are intended to be sent in a 
regular period, say, every ten minutes or every hour.  The receipt of a 
Heartbeat message from an analyzer indicates that the analyzer is up and 
running. 

Analyser Identification information for the analyzer that originated the heartbeat. 
CreateTime The time the heartbeat was created. 

AddData Similar description to *. 

Sensor 
ID 

Alert  
ID SrcIPAddress DestIPAddress Src  

Port 
Dest
Port Serv Time AlertType 

109 289 135.013.216.191 172.016.112.149 22 22 tcp 2007-11-24 
17:42:31 

STEALTH 
ACTIVITY 
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Fig. 3 : IDMEF representation of an alert in an XML document 

3.2 Alert preprocessing 

Alert attributes are in the form of numerical and non-numerical values. Attributes 
that contain numerical values are AlertID, SensorID, SourcePort, DestinationPort, 
and DetectTime. The rest are non-numerical values (i.e., SourceIPaddress, 
DestinationIPaddress, ServiceProtocol and AlertType) and have to be mapped 
into numerical values. For instance to convert a 32-bit IP address (IPaddr) which in 
X1.X2.X3.X4 format, mapping as (1) was used. 

 
IPaddr = ((X1 x 256 + X2) x 256 + X3) x 256 + X4    (1) 

 

<IDMEF-Message/> 
<?xml version="1.0"?> 
<!DOCTYPE IDMEF-Message PUBLIC "-//IETF//DTD RFC XXXX 
IDMEF v1.0//EN" "/usr/local/etc/idmef-message.dtd"> 
<IDMEF-Message version="1.0">  

<Alert ident="289">  
<Analyzer analyzerid="109" model="snort" version="2.0.5">  

<Node>  
<name>tcpdump_dmz</name>  

</Node>  
</Analyzer>  
<CreateTime ntpstamp="0xc36cc187.0xd3aa9b49">2007-11-

24T17:42:31Z</CreateTime>  
<Source>  
<Node>  

<Address category="ipv4-addr">  
<address>135.013.216.191</address>  

</Address>  
</Node>  

<Service>  
<port>22</port>  

<protocol>tcp</protocol>  
</Service>  

</Source>  
<Target>  
<Node>  

<Address category="ipv4-addr">  
<address>172.016.112.149</address>  

</Address>  
</Node>  

<Service>  
<port>22</port>  

<protocol>tcp</protocol>  
</Service>  

</Target>  
<Classification origin="vendor-specific">  

<name>msg=(spp_stream4) STEALTH ACTIVITY 
(NULL scan) detection</name>  

<url>none</url>  
</Classification>  

</Alert> 
</IDMEF-Message> 
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We scaled all values in the range of [0,1]. We tested against two scaling methods 
to find the best result in the alert clustering component. They were Unit Range 
(UR) and Improved Unit Range (IUR) as in (2) and (3) respectively, where x’ is 
the scaled value, x is raw value, xmax is maximum value and  xmin is minimum 
value. 

 
 

 

 

 

3.3 Dimension reduction using PCA 

PCA has proven to be a useful technique for dimension reduction and multivariate 
analysis [9]. An important virtue of PCA is that the extracted components are 
statistically orthogonal to each other. This produces speedup training and robust 
convergence as shown in [10]. We expect that the unsupervised learning 
algorithm can work much better with PCA. According to [9], PCA is for a set of 
observed vectors {vi}, i∈{1,2,...,N}, the q principle axes {wj}, j∈{1,2,..,q} are 
those orthonormal axes onto which the retained variance under projection is 
maximal. It can be shown that the vectors wj are given by the q dominant 
eigenvectors (i.e. those with largest associated eigenvalues) of the covariance 
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i −= , where ( )qwwwW ,...,, 21= , is thus a q-dimensional reduced 
representation of the observed vector { }iv .  

For the intrusion alerts in the dataset, the purpose of performing PCA is to find the 
principal components of the alerts, i.e., the attributes vector that can describe the 
alerts exactly and sufficiently, but not redundantly. In mathematical terms, we 
wish to find the principal components of the distribution of the alerts, or the 
eigenvectors of the covariance matrix of the set of the alerts [9], [11]. 

3.4 Alert clustering with unsupervised learning 

Besides EM, we tested against other three unsupervised learning algorithms 
namely Self-organizing maps (SOM), K-means, and Fuzzy c-means (FCM) for 
performance comparison. Noted that, in this clustering component, we did not 
include the AlertID, SourceIPAddress, and DestinationIPAddress attributes 
because as mentioned in [12] IP address tended to impede correct clustering since 
they are easily forged. However these attributes will be used for the next stage of 
correlation in our future work. 

 (2) 

(3) 

x’ =  (x – xmin)  
(xmax – xmin) 

x’ = 0.8 x ( x – xmin) + 0.1 
(xmax – xmin) 
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3.4.1 SOM 

SOM [13] is a competitive learning algorithm that reduces the dimensions of data 
by mapping high dimensional data onto a set of units set up in a 2-dimensional 
lattice. An n-dimensional weight vector is associated with each unit, having the 
same dimension of the input space. At each step, the Euclidean distances between 
a randomly selected input vector x and all the units weight vectors wi is calculated. 
The unit having the shortest distance to the input vector is identified to be the best 
matching unit c for x. As a result, the winner index c or best matching unit (BMU) 
for input vector x(t) is identified. Then, the input is mapped to the location of the 
BMU. We updated the weight vectors of the units neighboring the BMU(c) and of 
BMU itself according to (4), for i = c and its neighbours.  

( ) ( ) ( ) ( ) ( )( )[ ]twtxttwtw iii −+=+ δ1   (4) 

3.4.2 K-means 

K-means [14] follows a simple and easy way to cluster a given data set through a 
certain number of clusters (assume k clusters) fixed a priori. The main idea is to 
define k centroids (or center), one for each cluster. The centroid is the average of 
all the points in the cluster i.e., its coordinates are the arithmetic mean for each 
dimension separately over all the points in the cluster. The better choice is to 
place them as much as possible far away from each other. The next step is to take 
each point belonging to a given data set and associate it to the nearest centroid. 
When no point is pending, the first step is completed and an early groupage is 
done. At this point, k new centroids are re-calculated as barycenters of the clusters 
resulting from the previous step. With these k new centroids, a new binding has to 
be done between the same data set points and the nearest new centroid. A loop has 
been generated. As a result of this loop, the k centroids change their location step 
by step until no more changes are done. In other words centroids do not move any 
more. Finally, this algorithm aims at minimizing an objective function, in this case 
a squared error function. The objective function is as (5): 

 

 
2

1 1

)(∑∑
= =

−=
k

j

n

i
j

j

i cxJ  (5) 

where 
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i − is a chosen distance measure between a data point xi
(j) and the 

cluster centre cj, is an indicator of the distance of the n data points from their 
respective cluster centres. The algorithm is also significantly sensitive to the 
initial randomly selected cluster centres. The k-means algorithm can be run 
multiple times to reduce this effect. The main advantages of this algorithm are its 
simplicity and speed which allows it to run on large datasets [14]. 
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3.4.3 FCM 

Fuzzy c-means (FCM) is a method of clustering which allows one piece of data to 
belong to two or more clusters. This method (developed by [15] and improved by 
[16]) is frequently used in pattern recognition. It is based on minimization of the 
following objective function as (6): 
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where m is any real number greater than 1, uij is the degree of membership of xi in 
the cluster j, xi is the ith of d-dimensional measured data, cj is the d-dimension 
center of the cluster, and ||xi - cj|| is any norm expressing the similarity between 
any measured data and the center. Fuzzy partitioning is carried out through an 
iterative optimization of the objective function shown above, with the update of 
membership uij and the cluster centers cj by (7) and (8) respectively: 
 

  (7) 

 

   (8) 

This iteration will stop when , where  is a 
termination criterion between 0 and 1, whereas k are the iteration steps. This 
procedure converges to a local minimum or a saddle point of Jm in (6). 

3.4.4 EM 

The EM algorithm [17] consists of two repeated steps, Expectation and 
Maximization. It uses a statistical model called Gaussian finite mixtures to 
achieve the goal of producing the most likely set of clusters given the number of 
clusters, k, and a set of data. The model consists of a set of k probability 
distributions, one to represent the data of each cluster. There are parameters (e.g, 
number of iteration and log likelihood difference between two iterations) that 
define each of the k distributions. The EM algorithm begins by making initial 
guesses for these parameters based on the input data, then determines the 
probability that a particular data instance belongs to a particular cluster for all data 
using these parameter guesses. The distribution parameters are revised again and 
this process is repeated until the resulting clusters have some level of overall 
cluster ‘goodness’ or until a maximum number of algorithm iterations are reached. 
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In particular, it attempts to find the parameters θ that maximize the log probability 
logP(x;θ) of the observed data. It reduces the difficult task of optimizing logP(x;θ) 
into a sequence of simpler optimization subproblems, whose objective functions 
have unique global maxima that can often be computed in closed form. These 
subproblems are chosen in a way that guarantees their corresponding solutions    
φ (1)φ (2),... and will converge to a local optimum of logP(x;θ). More specifically, 
the Expectation step (E-step) of the algorithm estimates the clusters of each data 
instance given the parameters of the finite mixture. During the E-step, the 
algorithm chooses a function gt that lower bounds logP(x;θ) everywhere, and for 
which gt(φ (1))=logP(x; φ (t)). 

The Maximization step (M-step) of the algorithm tries to maximize the likelihood 
of the distributions that make up the finite mixture, given the data [12]. During the 
M-step, the algorithm moves to a new parameter set φ (t+1), that maximizes gt. As 
the value of the lower-bound gt matches the objective function at φ (t), it follows it 
follows (9), so the objective function monotonically increases during each of the 
iterations in EM [18].  

  logP(x;φ (t)) = gt(φ (t))≤  gt(φ (t+1)) = logP(x;φ (t+1))   (9) 

3.5 Alert ranking and verification 

Alerts that issued by NIDSs were not all in the same level of severity and 
importance. It would be great if the system can identify which alerts are highly 
important and which are not, so that the number of alerts that need to be deal with 
can be reduced. The algorithm for alert ranking and verification component is 
shown in Fig. 4. As shown in Fig. 4, we automatically cross-checked each alerts 
with the sensor’s signatures file [19] to determine the priority of alerts and to 
verify the false positive and invalid alerts. In alert ranking, we introduced three 
level of severity: (1) High-risk, (2) Medium-risk and (3) Low-risk. For each level, 
we associate a numerical weight of priority in order to distinguish significant 
alarms from the others. 

3.6 Alert reduction 

Given the clustered alerts from previous component, redundant alerts (i.e., alerts 
that have equal values in all attributes) in each cluster were merged into a hyper-
alert. In specific, repeated alerts for each cluster were represented as one. 
Moreover, with the reduction of invalid, false positive and low risk alerts, the total 
number of alerts left for future analysis is significantly reduced. The alert 
reduction algorithm is shown in Fig. 5. 
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Fig. 4 : Algorithm for alert ranking and verification 

 

 

 

 

 

 

 

Fig. 5 : Algorithm for alert reduction 

Cj : Cluster, ic : alert in cluster Cj, ci.rank : weight for severity level, ci.verify : 
weight for false/true intrusion. 
 
global ranking (alert) { 
 while each alert 

ji Cc ∈ , do  

 if  (ci.AlertType is null) 
  ci.rank  -1  
  invalid++ 
 else : 

if  (ci.AlertType matched LOW severity level) 
   ci.rank  0          %Low-risk% 
   low++   
  else : 

if  (ci.AlertType matched MEDIUM severity level) 
   ci.rank  0.5   %Medium-risk%  
   medium++ 
   else :    
    ci.rank  1 %High-risk% 
    high++ 
 outputs invalid, low, medium, high 
 call verify(alert)  } 
  
global verify (alert) { 
 while each alert 

ji Cc ∈ , do  

if  (ci.AlertType is reported as FALSE POSITIVES) 
 ci.verify  1    
 false++        
else : 
 ci.verify  0 

 outputs false 
 call reduction(alert)       } 

mode: automatic delete for low risk alerts (1) need permission, (2) no need 
 
global reduction (alert) { 
 while each alert 

ji Cc ∈ , do  

  if  (all attributes values in ic  is EQUAL to all attributes values in 1+ic  ) 
   delete ic  
   merge++ 
  else :   
  if  (ci.verify is ‘1’)  
  delete ic  
  else :  
  ask mode 
   if (ci.rank is ‘0’ AND mode is ‘0’) 
  delete ic  
   else : 
 outputs sum of  merge, invalid, false, low  } 
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4 Results and Discussions 

Performing real attacks in real networks to produce NIDS alerts as datasets are not 
realistic [20] and our work therefore shares the weaknesses with other published 
research works in the area whom using publicly available benchmark data. The 
lack of publicly available and representative datasets hinders ACS research and 
makes the comparison of different ACS and algorithms difficult. Most of the 
research community of IDS evaluated their works with DARPA’s datasets. These 
datasets are, nonetheless, the only publicly available datasets in evaluating IDSs. 

4.1 Dataset and Experiments 

The experiments were conducted with MIT Lincoln’s Lab’s DARPA 2000 
Scenario Specific Dataset [21]. The dataset contain simulated multi-staged attack 
scenarios in a protected environment: the intruder probes, breaks-in, installs the 
Distributed Denial-of-Service (DDoS) daemon and launches a DDoS attack 
against an off-site server. Since we are dealing with the sensor data, alerts 
reported by RealSecure network sensor Version 6.0 [22] which were provided by 
[23] were used to evaluate the effectiveness of our model. 

The alerts data represents two kinds of attack scenarios (i.e., scenario 1.0 and 
scenario 2.0.2) in two types of networks (i.e., inside and dmz network). Attacks in 
scenario 2.0.2 were stealthier than scenario 1.0.  For this paper, we only used 
alerts data for scenario 2.0.2 in dmz network. For implementation of the model, 
we used MATLAB Software [24]. We have five set of experiments as illustrated 
in Table 3 : (1) clustering with UR only (i.e., labeled as UR), (2) clustering with 
IUR only (i.e., labeled as IUR), (3) clustering with PCA only (i.e., labeled as 
PCA), (4) clustering with UR and PCA (i.e., labeled as UPCA), and (5) clustering 
with IUR and PCA (i.e., labeled as IPCA). 

 

Table 3 : Clustering performance 

 

 

Model 
FCM K-means SOM [25] EM 

CE ER 
(%) 

AR 
(%) 

Time 
(sec) CE ER 

(%) 
AR 
(%) 

Time 
(sec) CE ER 

(%) 
AR 
(%) 

Time 
(sec) CE ER 

(%) 
AR 
(%) 

Time 
(sec) 

UR 78 18.40 81.60 1.30 62 14.62 85.38 4.23 139 32.78 67.22 4.22 47 11.08 88.92 1.90 

IUR 74 17.45 82.55 1.27 57 13.44 86.56 4.40 135 31.84 68.16 4.21 45 10.61 89.39 1.85 

PCA 133 31.37 68.63 3.56 141 33.25 66.75 5.20 170 40.09 59.91 6.52 86 20.28 79.72 2.67 

UPCA 70 16.51 83.49 4.80 52 12.26 87.74 6.12 127 29.95 70.05 7.44 43 10.14 89.86 4.64 

IPCA 67 15.80 84.20 4.81 46 10.85 89.15 6.18 112 26.42 73.58 7.42 41 9.67 90.33 4.59 
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Table 4 : Total of ranked alerts 

Priority Type of Alerts Total 

High-risk 
Admind, HTTP_ActiveX, 
HTTP_Cisco_Catalysts_Exec, 
Sadmind_Amslverify_Overflow 

10 

Medium-risk Email_Almail_Overflow, FTP_Pass 43 

Low-risk 

Email_Ehlo, FTP_Put, FTP_Syst, 
FTP_User, HTTP_Java, SSH_Detected, 
TCP_Urgent_Data, TelnetEnvAll, 
TelnetTerminalType, TelnetXdisplay 

371 

Table 5 : Total reduction of alerts 

Merged Invalid FP Low-risk SUM Reduction 
(%) 

3 2 1 371 377 87.67 

4.2 Data Analysis 

The number of alerts tested was 430. The results obtained were compared against 
the benchmark clusters (i.e., 16 clusters are expected) to determine the 
performance of the proposed model. As in Table 3, we used four measurements: 
(1) Clustering Error (CE) is the number of alerts that are wrongly clustered.  (2) 
Error rate (ER) is the percentage of wrongly clustered alerts, ER = (CE ÷ Total 
number of alerts observed) x 100, (3) Accuracy Rate (AR) is the percentage of 
alerts that are accurately clustered as they should be, AR = 100 – ER, and (4) 
Time is the algorithm processing time in seconds. 

We varied the number of clusters in FCM, K-means, and EM to find the optimal 
results.  Similarly, we tested the SOM by simultaneously varying the epochs and 
lattice configuration. Two third of the dataset was used for training and the rest 
was for testing. The best result on SOM (i.e., 73.58% with IPCA) was attained 
after it was trained for 2500 epochs using hexagonal 4 by 6 lattice type. It 
produced 12 clusters. It term of time costs, the overall processing time for training 
and testing was 7.42 seconds. The processing time might be longer if the dataset, 
epochs and/or lattice type are larger. 

Overall, the best performance was with EM (i.e., 90.33% with IPCA) which was 
reached at 14 clusters and the processing time was 4.59 seconds. In each cluster, 
similar types of alerts were grouped together to represent an attack step. Since 
FCM, K-means, and SOM have a larger value of CE, it means that they put a 
large number of alerts that should belong together in one cluster into another 
clusters.  Therefore, we summarized that the proposed model (i.e., IPCA-EM) is 
effective and performed better than the rest of the algorithms tested for this dataset 
in terms of clustering accuracy and processing time. 
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Table 4 presented the type of alerts with their level of rank/priority. It shows that 
the majority of the alerts are most probably not serious at all. SE might found such 
alerts inappropriate to be analyzed and correlated. But, others may feel they are 
appropriate. Because of that, our system provided two kind of mode to 
automatically delete the low risk alerts: (1) need permission from SE, or (2) no 
need. If (2) was chose, then the total reduction of alerts was significant (see Table 
5). Table 5 illustrated the total alerts in each category (i.e., merged redundant 
alerts, invalid, false positives and low risk alerts) which the system considers in 
order to reduce the amount of alerts. The original input data was 430, thus total 
reduction of unwanted alerts was 87.67%. 

5      Conclusion and Future Work 

Automation of alert management and analysis is crucial because alerts are in low 
level information and the volume is very large that make them tedious and hardly 
to be analyzed manually. Since alerts are not significant if they are isolated, thus 
finding the relationships between them is an important stage.  

Grouping and clustering the alerts based on their feature similarities actually can 
reveal the attack steps launched by the attackers. Moreover, redundant alerts can 
be detected and merged easily. Therefore, the novelty of this work is the new 
integration of IUR, PCA and EM algorithm (which we called it IPCA-EM) as a 
solution to cluster multi sensors’ intrusion alerts and to filter out the unwanted 
alerts. To the best of our knowledge, this is the first attempt for such integration 
and produces better results. 

Altogether, the results are encouraging in terms of clustering accuracy rate and 
processing time compared to other unsupervised learning algorithms tested in this 
paper. Noted that a successful network attack consists of multi-stages attack, and 
an attack stage may comprise of one/more attack steps.  Thus, we need a 
secondary clustering component to aggregate similar attack types to reveal the 
stages of attack. This becomes our main future work besides testing the proposed 
model with larger dataset. In the near future, we would like to develop a 
collaborative multi-stages correlation system to determine known and unknown 
attack scenarios. 
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