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Abstract 

     In this paper, we propose a new approach for solving 
combinatorial optimization problems as scheduling problems,  
traveling salesman problem, transport problems, and images 
segmentation which have exponential complexity and known as NP-
hard problems. This approach, known as Sieve approach is based on 
the sieving operation idea used to sift grains by translating it on an 
algorithmic tool. This approach generates randomly and iteratively a 
great number of feasible solutions by batches. The bad items are 
removed, while the good items are assembled in a smaller central set 
according to an appropriated fitness function. The best solution is 
computed from this small set according to the problem objective. The 
fitness function may be easy to compute but it may simulate the 
objective. We provide a mathematical formulation for representing 
the problem environment. The implementation is done on a single 
machine scheduling problem and the results are compared to show 
the approach efficiency.  The findings show that our proposed 
method can give better solutions than existing meta heuristics like 
genetic algorithms, ant colonies, and simulated annealing. 

Keywords: Meta heuristics, Optimization, Combinatorial problems, 
Sieve method, Scheduling. 

1      Introduction 

As it is known, the existing meta-heuristics have two main disadvantages: the 

quality of solution and the eventual premature convergence. In the one hand, we 

cannot always proof that the solution obtained is near to the optimal for biggest 

problem size. On the other hand, sometimes they converge prematurely to a local 
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optimum; often it is very costly in time to avoid this situation. So, by using the 

proposed approach, we try to fill these gaps and give an alternative to treat 

combinatorial problems [4]. As other meta-heuristics such as genetic algorithms 

[2], ant colonies [1] [30], and simulated annealing [5] [29] are inspired from 

natural phenomena, our approach is also inspired from the grains sieve 

phenomenal where, in order to sift them, the grains are added by handfuls 

periodically into the sieve. For each handful, they are sift: it implies that the little 

grains fall through the holes of the sieve and the big grains move towards the 

center of the sieve by proportional speeds to their volumes. These two steps are 

repeated for a great number of times. In this paper we propose mathematical 

model and formulation to this approach. Thus, the structure of the paper is given 

as follows: In section 2, we provide an overview of Sieve Algorithm and this 

covers the Sieve Principal, Sieve Properties, Sieve General Algorithm and The 

Modeling of Sieve Approach. Section 3 gives an insight of Sieve Algorithm for a 

Single Machine Scheduling, while Section 4 provides Results and Analysis of 

Sieve Algorithm. Finally, Section 5 draws some remarks and discussions. Note 

that our approach is different to sieve method used in primary numbers searches 

[3] [32].  

2      Overview of Sieve Algorithm 

In this section, we explain the main object of our work in details. It starts with the 

method principles, showing its parameters, and then, follows by the formulation 

of the general algorithm and its implementation.  

2.1      Sieve Principles 

By analogy to the sieving operation, from which is inspired the approach, we have 

to satisfy following principles: 

- The sieve is used to sift grains for getting the best ones; 

- Grains to be sift are added into the sieve periodically by handfuls; 

- The initial sieve is chosen according a sample of the grains to be sift;  

- The grains can be divided on a great number of handfuls; 

- For each added handful, the grains are sift many times; 

- When sieving, the little grains fall out the sieve from holes and the biggest ones 

move slowly toward the sieve center; if all grains fall, we must change sieve by 

another one having smaller holes. 

- The movements of grains are assumed linear and decelerated but their speeds 

are proportional to their volumes, bad items may never reach the center; 

- If the operation is not well accomplished, we can also change the sieve by 

another one having larger holes; 

- At least, the best grains will stabilize in a small circular area near the sieve 

center. 
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Now, we have to translate these principles on a general algorithm to accomplish 

the sieve task, with some parameters to perfectly simulate the environment of the 

task. Since, a good projection of these principles on the problem environment may 

provide good results. However, this projection will impose the intervention of 

several parameters which could also affect the solution quality. 

2.2      Sieve Parameters  

Before using this method, we need to carefully define following such data of the 

problem, some parameters to be used by the principles of our approach (fig. 1): 

- sieve S, set of grains initially empty, it is the solutions pool; 

- the radius r of the sieve (r∈R
+
), taken large enough to hold a significant 

number of grains; 

- the radius b of the critical area A (b∈R
+
, b = small fraction of r, b ≈ r/10, 

r/20,… ); this critical area is used to accelerate the approach, so, no need to 

search the solution in S, but just in the area A; 

- the diameter h of the hole sieve (h∈R
+
, h << r, h ≈ lower bound, h can be 

increased by h=α*h (α >1) changing sieve to improve results ); a big value of 

h can produce divergence of the algorithm in which case we could reduce h by 

h=β*h (0<β <1). So, the initial value of h must be chosen according the 

problem properties. 

- the quantity n of grains in each handful (n∈N, n≈100,200,…); 

- the grains gi, i = 1,2,…,n (gi is a solution of the problem, well codified as 

vector, set, array, string,  object, …); 

- the respective distances di, i = 1,2,…,n of grains gi, to the sieve center (di∈R
+
, 

di < r), these distances will decrease during the movement of grains (when 

sieving): the grains approach to the center, initially we have  b< di < r to 

avoid making bad grains in zone A; 

- a fitness function f to evaluate grains (f(gi)∈R+, f(gi) = diameter of gi = 

function simulating  the problem objective); 

- the speed vi of grain movement (such as di
t+1

= vi*di
t
, vi function of f, 0≤vi≤1); 

- the number Nb of iterations (Nb = number of added handfuls, generally taken  

large enough as Nb≈1000,10000,…); 

- the number Ns of sifts (Ns  = number of sieving times for each added handful, 

Ns≈10,20,…), also it is the number of grains movement; 

The values of these parameters are chosen according to the treated problem. 

However, the adjustment of these values can considerably improve the results.  
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Fig 1: Sieve Parameters 

2.3 General Sieve Algorithm  

As it was described above, the general algorithm of our approach is composed of 

two main steps which are repeated for a great number of iterations and a third step 

that consists just to get the best solution from a small central area of the sieve: 

Sieve Algorithm 

Choose initial sieve hole; 

For a great number of iterations  

  Add handful grains into the sieve; 

  If all grains fall change sieve; 

  Sift grain; 

  If no improvement change sieve; 

End for 

Get best grain; 

End. 

Before starting sieving, we need to choose suitable sieve; that means select good 

holes diameter. In terms of combinatorial problems, this initial value of holes 

diameter will represent the lower bound of problem solutions. So it depends of the 

problem and it must be carefully chosen to accelerate the approach and avoid 

premature convergence of the algorithm. While evolving in the approach, this 

value will be adjusted to the problem environment. Note that we can use the 

specific properties of the problem to find the initial h. 
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The first step consists to generate randomly a lot (handful) of grains (feasible 

solutions for the proposed problem). The size n of the handful, since the number 

of grains added at each time is depending of the problem. So, the grains gi (i = 

1,2,…,n) and their respective distances di from the center are generated randomly 

by using uniform law to avoid favoring certain solutions.  

The second step represents the sieving operation itself. It consists to move grains 

by applying the sieve principles, so:  

- When sieving, the grains gi such as f(gi) ≤ h will fall out the sieve, and the 

grains gi such as f(gi) > h will move slowly toward the sieve center with 

appropriated speed vi; 

- f(gi) must imperatively simulate the problem objective to be optimized; it 

may be easy to compute because it concerns a large set of feasible 

solutions (gi), but when computing the best solutions (in the area A), we 

will use the objective itself; that means: the grains are moving according a 

fitness function f (their diameters), but the best ones are chosen according 

their real objectives (their real weight); so some bad grains can arrive to 

the area A but they are not selected (false items); because f simulate the 

objective (f ≈ Obj); 

- vi must be proportional to f(gi), that means: the grains which have a great 

diameter f(gi) will move more quickly toward the center and vice versa; 

that will favorite the best solutions to be selected and  otherwise; 

- because of congestion around the center, the speed vi of grain must be a 

decreasing function of time: more grains approach the center, the choice 

is more rigorous; 

- after Ns sieving iterations, if there are no improvement of the solutions, we 

can change the sieve, that means increasing the hole diameter by 

replacing h by α*h (α>1) as α=1.1,1.2,1.3,… . This will bring down more 

grains having higher diameters, since that will increase the speed of 

remaining seeds. Longer solution candidates will enter the critical zone A; 

- in the other hand, to avoid algorithm divergence, since when we obtain S 

= ∅, we reduce h by replacing it by β*h (0 <β <1) as β = 0.9,0.8,0.7,….; 

- this second step will be repeated for Ns times of sieving, ; 

- the two steps are also repeated Nb times of adding handfuls; 

The last step allows finding the best solution from the central critical area A 

which have radius b, that will accelerate the algorithm because we will just 

explore this small area instead of sieve entire contents; 

2.4 The Modeling of Sieve Approach 

Firstly, as in any other method, we have to carefully define a system codification 

of the sieve contents S and the solutions (grains) gi. This codification has a great 

importance and a significant influence on the approach efficiency. For example, gi 



 

 

 

 

 

 

 

Hemmak Allaoua, Bouderah Brahim.                                                                    6 

can be integer vector, binary array, string of characters, set of items, and complex 

object. 

Examples:  

• in single machine scheduling problems, gi can be an integer sequence of jobs 

(j1,j2,…,jk); 

• in job shop scheduling problems, gi can be an integer matrix of jobs 

j11,  j12, …, j1k, 

j21,  j22, …, j2k, 

………………… 

• in salesman travelling  problems, gi can be an integer sequence of cities 

(j1,j2,…,jk); 

• in images segmentation problems, gi can be a binary array of digits 1 and 0;  

• in search engine problems, gi can be a string of characters like URL web 

sites; 

• in affectation problems, gi can be a set of couples as {(pi,sj)};…. 

Then, we must establish the rule of the fitness function f to be used to evaluate the 

grains gi by simulating the problem objective to be optimized and the rule of the 

speed vi(gi) of grain gi by using fitness function f(gi).  

Finally, we must choose suitable values for the parameters defined above Nb, Ns, 

n, r, b, α, β. 

Note that, in this approach, we have always to maximize f. So, if we have to 

minimize the problem objective, we must adjust rules to satisfy these constraints, 

we can take for example:  

f(gi) = 1 -  Objective’(gi)/∑SObjective’(gi) 

vi(gi) = (1 -  di/r)( 1 - f(gi)/∑Sf(gk) 

Where objective’ is a sample function that simulating the objective, it must be 

easy to compute to accelerate the approach, however it must be proportional to the 

objective. It is clear that all grains have the same function f  but they have 

different speeds vi. This speed vi may be chosen such as bad items may move too 

slowly toward the center or they may never reach it. Bad items means gi such 

f(gi)> h , i.e. f(gi) = h + ε ≈ h. 

The first rule shows that f(gi) is depending of all both grains gi, it means that the 

choice of a solution is depending of the others ones. The second rule shows that 

vi(gi) is proportional against both f(gi) and di. That means: in one hand, the big 

grains will arrive quickly to the critical area before the little ones, in the other 

hand, when we increase h, some gi will fall, so the sum ∑ f(gk) will decrease, it 

imply that vi(gi) will increase. That means, when some grains fall, that will allow 

the other grains to move more quickly.  
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Since we have initially b < di < r, we will assume the set S - A at the set S. It is 

clear that no need to sift or generate grains in zone A. In the other hand, the 

algorithm must not terminate by empty set A. so the number of iterations Nb must 

be enough great to avoid this bug.  

In fact, we can take other rules for f(gi) and vi(gi) but we must always respect the 

method principles to obtain good results. The translation of the above algorithm 

on a programming code produces the following program: 

Program sieve; 

S = ∅; A = ∅;  // initializations 

Compute initial h; // lower bound according problem properties 

For (k=1;k≤Nb;k++) // method iterations  

   {  

For(i=1;i≤n;i++)  // add handful of n grains into sieve S 

{ generate gi , .di; // randomly by using uniform law 

  S = S ∪ {gi;} // adding grain to S 

}  

           for (t=1;t≤Ns;t++) // sieving  

   {   for each gi of  S 

         {  if (f(gi) ≤ h)  S = S - {gi;} // removing grains from S 

            if (S = ∅) { h = β*h; loop; } // reducing h 

             if (di ≤ b ) {S = S - {gi;}; A = A ∪ {gi;}}  

                                                             // making grain in critical area A 

  di = vi*di;   // decreasing distances 

         } 

   }    // end sieving 

           if (A = ∅) h = α*h; // increasing h 

     } // end method iterations  

       min = ∞      // computing best solution 

    for each gi of   A   

          if (Objective(gi) < min) { min = Objective(gi) ; solution = gi ;} 

    print solution, Objective(solution); 

end. 
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To well complete this implementation, we must add the code for three functions: 

- Objective : according the treated problem; 

- f: according the objective function; 

- vi: according fitness function f; 

Then, we need to write the code of “generate procedure” which is following used 

codification of grains and parameters values. Also, it is clear that this 

implementation is independent of specified problems. Since, it gives a formal 

generic model which can be applied to any optimization problem. We just need to 

well choose the right parameters and well establish above functions. 

 

3       Sieve Algorithm For a Single Machine Scheduling   

To show our approach efficiency, we will applied it on a single machine 

scheduling problem of independent jobs where the objective consists to minimize 

the sum of earliness and tardiness penalties against common due date. This 

problem was treated in many search subjects where was proofed as NP-hard 

problem and was applied in JIT (Just-In-Time) philosophy as in manufactures, 

commerce, and transport. In the recent years, this type of problems has received 

significant attention and become important with the advent Just-In-Time (JIT) 

concept, where early and tardy deliveries are highly discouraged. For example, the 

just-in-time-principle states that the right amount of goods should be produced or 

delivered at exactly the right time. According to our search, we found few 

research related to this problem: Kanet (1981) [11] [13], Lee and Kim (1995) [6],  

James (1997), Gordon et al. (2002) [9],  Feldmann et Biskup (2003) [6] [7] [8], 

Hino, Ronconi et Mendes (2005) [12], Lin, Chou, Ying (2005), Biskup and Cheng 

(1999) [14], Hall and Posner (1991) [10]. On the other hand, some work have 

been done on solving this problem using exact methods as in [22] [23] [25]. While 

other researchers have treated heuristics methods as in [15] [16] [18] [21] [24] 

[27]. Some works used genetic algorithm as meta heuristic as in [19] [26] [28]. 

We note that the problem has treated in many options: single machine [6] [20] 

[25] [27], two machines [15] and multi machines [16] [17] [31]. 

 

For our propose method, we provide notations of this problem as below: 

I : a set of  n jobs:  I = { 1 , 2 , …. , n } ; 

d : common due date of all the n jobs ; 

Ci : complete time of job i ; 

pi : processing time of job i ; 

Ei = max{d-Ci , 0} (Earliness of job i) 
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Ti = max {Ci-d , 0} (Tardiness of job i)  

αi : penalty per unit time of earliness for job i ;  

βi : penalty per unit time of tardiness for job i ; 

h : parameter of common due date : d = h * T ; where: ∑ =
=

n

k ipT
1

   ;  

h ∈ { 0.2 , 0.4,0.6,0.8 }. 

The definitions for a single machine scheduling problem with the objective to 

∑ =
+

n

k iiii
TE

1
)(   minimize βα  is given below, 

where n  is independent jobs to be processed on a single machine without 

interruption with common due date d ; each job is available at time 0; each job 

must be processed just once. For each job i , the processing time 
ip , the cost per 

unit time of earliness 
iα , the cost per unit time of tardiness 

iβ  are given and we 

assume as integer values; 

3.1      Problem Properties  

For this problem, an optimal solution must satisfy three optimality properties. To 

obtain the objective value more efficiently, these three properties are integrated in 

our meta-heuristic. 

Property 1. An optimal schedule does not contain any idle time between any 

consecutive jobs. 

Property 2. An optimal schedule is V-shaped around the common due date: the 

jobs complete before or on the common due date are sorted in decreasing order of 

the ratios 
i

i
p

α
, and the jobs starting on or after the common due date are sorted 

in increasing order of the ratios 
i

i
p

β
. 

Property 3. In the optimal schedule, either the first job starts at time zero or the 

completion time of one job coincides with the common due date. These properties 

can be established using proof by contradiction. 

3.2 Sieve Algorithm for a Single Machine Scheduling 

In this implementation, we develop the above general algorithm on a computer 

program to be tested with real cases. Since, this program could be immediately 

implemented once, we have carefully defined the necessary elements of the 

problem as the objective function and some parameters values. The main 

operations of this program are given below and follows by explaination. 
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- Initializing variables;  

- Generating handful;  

- Removing little grains;  

- Sieving grains; 

- Changing sieve; 

- Getting best grain; 

-  

Initializing variables 
 

=S ∅ : S is a set of grains, the contents of the sieve, initially empty. At any step 

of the algorithm we have: S = {gi / b <di <r}; 

 

A = ∅ : when sieving we will obtain A = {gi / di ≥ b}; Note that S ∩ A = ∅. 

 

Generating handful 
 

“Generate” is a procedure used to randomly generate n grains and their respective 

distances to the center. it is recommended to use uniform law to cover all space 

feasible solutions. We need also choose good structures for data representation. 

 

Removing little grains 
 

if (f(gi) ≤ h) S = S - {gi}: this operation consists to remove little grains, which 

having:  f(gi) ≤ h. All solutions of 
i

g such as f(gi) ≤ h are eliminated from S. 

 

Sieving grains 
 

 if (di ≤ b ) {S = S - {gi;}; A = A ∪ {gi;}} :  

Note that, at least, we need the associated objective. 

solution= gi: we store the best solution associated to the best fitness. 

improve=true: we note that there are improvement of the solution : no need to 

change sieve at this step.  

 

di = vi*di: this operation allows us to change all grains positions by updating 

(decreasing) their distances to the center. Here, we consider that the movements of 

grains are linear and decelerated. In mathematical terms, this operation can be 

written: di
t+1

= vi*di
t
. We have di ≤ r and 0 < vi < 1, so: di

t+1  
<  di

t
, it implies the 

grain gradually approach from the center. 

 

Changing sieve 
 

There are two cases where we need change sieve: 
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i) if (S = ∅)  h = β*h : In mathematical terms, this operation can be written:  

hk+1= β *hk. We have 0 < β < 1 (such as β = 0.9, 0.8,…) to decrease the hole 

diameter of sieve. Note that we must carefully choose the first value of h  to avoid 

the divergence of the algorithm (that means when h is too great, all grains will fall 

out. So, we need to select a suitable value for h and we increase it gradually. 

 

ii) if (A = ∅) h = α*h : In mathematical terms, this operation can be written:  

hk+1= α *hk. We have α > 1 (such as α = 1.1,1.2,…) to increase the hole diameter 

of sieve. This causes not only the fall of larger grains but also the acceleration of 

the grains remaining, which leads to the acceleration of the method. 

 

Getting best grain 

 
    min = ∞      // computing best solution 

    foreach gi of   A   

          if (Objective(gi) < min) { min = Objective(gi) ; solution = gi ;} 

    print solution, Objective(solution); 

print solution, Objective(solution) 

The last operation consists to compute the best solution found and its objective. 

4      Results and Analysis of Sieve Algorithm 

The set of problems tested was selected from Biskup and Feldmann (2001,2003), 

with seven different instance sizes with n = 10; 20; 50;100; 200; 500;1000 jobs 

and 4 restrictive factors h  = 0.2; 0.4; 0.6; and 0.8. They are used to determine 

the common due date d , by multiplying the total sum of all processing times, as 

follows: Thd *= .There are 10 instances for each problem size for our 

computational results.  

Firstly, we have computed the exact solutions for smaller sizes such as n  = 5; 10 

; 20 ; 50 by using dynamic programming method then by using the proposed 

approach. Thus, we have obtained two solutions for each instance: Exact 

Solution (ES) and the Near Solution (NS). The deviation, NENS −=∆  is 

inversely proportional to h as shown in fig. 2.  

This variation of ∆  means that when h  is small; there are only few choices to 

schedule jobs because of their time processing 
i

p since, some jobs can not 

scheduled before common due date d . Inversely, when h  is larger, there are 

many choices to schedule jobs against d , so we can conclude that the near 

solution is best when h is larger. Even when the size n  of the problem is larger; 

this conclusion stay satisfied because the sequence can begin at any time near d . 
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Fig. 2 : Variation of the deviation ∆ as a function of the ratio h . 
 

Then, we have chosen the most restrictive set of 140 instances,  i.e.  with h  = 0.2 

and h  = 0.4.  In order to measure the effectiveness of the results obtained,  we 

computed the Ratio Percentage Deviation (RPD) of the average of our solution 

values (SM) (Sieve Method) of every 10 instances over the average of the 

corresponding benchmark values provided by Biskup and Feldman Approach 

(BFA) as follows: RPD = {(SM − BFA )/BFA }* 100.  

Our results were obtained with following number of iterations: 500 iterations for 

n = 10, 20, 50 jobs; 1000 iterations  for n = 100, 200 jobs, and 10000 iterations  

for n  = 500 to terminate the algorithm.  Table 1 illustrates the findings of our 

proposed method using various number of jobs. 

Table 1: Percentage deviation of the average solutions  

2.0=h  10=n  20=n  50=n  100=n  200=n  500=n  1000=n  

BFA 1674.4 6429.2 37583.7 141143.3 543591.2 3348405.6 13293514.6 

SM 1674.4 6204.7 35505.1 133021.7 509500.7 3147715.8 9208717.2 

RPD% 0 -3.62 -5.85 -6.11 -6.69 -6.38 -44.36 

4.0=h  10=n  20=n  50=n  100=n  200=n  500=n  1000=n  

h=0.4 n=10 n=20 n=50 n=100 n=200 n=500 n=1000 

BFA 973.1 3703.7 21419.5 82120.2 315312.9 1917425.8 7651046.5 

SM 973.1 3651.1 20519 79051.7 307061.2 1787201.8 7320456.9 

RPD% 0 -1.44 -4.39 -3.88 -2.69 -7.29 -4.52 

Deviation ∆ 

Ratio h 
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The computational results reported in the Table 1 above show that our algorithm 

improves the average of all instances. The overall average improvement for h = 

0.2 is around -10.43% while it is −6.94% for h = 0.4.  

5      Conclusion 

The paper proposes a new approach, " Sieve Approach" for solving optimization 

problem. Sieve method is inspired from the sieving operation to give a new 

alternative for existing approaches as genetic algorithm, and ant colonies. This 

approach consists random and iterative batches of solutions in a great set. It 

eliminates bad items and makes good items in a small set by moving them 

according to appropriate speed. We provide a mathematical formulation for this 

approach as a general algorithm. Since the goal of the proposed method is to find 

the best solutions in reasonable time especially for great problems sizes, we have 

elaborated the different components by proposing the principles, formulating the 

algorithm, defining different parameters and finally producing the associated 

program. The proposed approach has been tested on the single machine 

scheduling problem with proper parameters values for better results. We hope that 

our proposed method will open more rooms for improvement in solving the 

optimization problems of large scale datasets. 
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