

Int. J. Advance Soft Compu. Appl, Vol. 5, No. 3, December 2013

ISSN 2074-8523; Copyright © SCRG Publication, 2013

Implementing a T-Way Test Generation

Strategy Using Bees Algorithm

Mohd Hazli Mohamed Zabil and Kamal Z. Zamli

College of Information Technology

Universiti Tenaga Nasional

e-mail: hazli@uniten.edu.my

Faculty of Computer Systems and Software Engineering

Universiti Malaysia Pahang

Pahang, Malaysia

e-mail: kamalz@ump.edu.my

Abstract

 In order to ensure software performance as well as software
quality, various testing techniques have been used to detect faults as
early and as many as possible during the development phase. Over
the last decade, the size and complexity of software developed have
increased tremendously. Highly customizable software allow users to
configure the software to the users’ needs, however, if not tested
adequately, these software are prone to interaction faults. This paper
discusses our experiences on implementation of Bees algorithm for
generating test cases to detect t-way interaction faults (where t
signifies the interaction strength).

 Keywords: Interaction testing, software testing, t-way testing, Bees algorithm.

1 Introduction

We use software in almost all activities in our life - performing our daily chores

like washing, watching television, using smart phones and even while we are

driving. With the advancement of technology, software not only resides in

computers, but also in many embedded devices such as mobile phones and

electronic appliances at home. To ensure acceptable quality, software needs to be

tested before delivery. For highly configurable software, all of the possible

combinations of configurations need to be tested accordingly to detect interaction

faults. However, taken into consideration of time-to-market and resource

constraints, performing exhaustive testing for all configured combinations is

impractical and inefficient due to combinatorial explosion problem. For example,

117 Implementing a T-Way Test Generation

let us take a system with 20 inputs with each input has 2 possible values. To

perform exhaustive combinatorial testing, we need to execute 2
20

 (1,048,576) test

cases, which is obviously impossible to test within finite time limit.

As a result, many t-way interaction testing strategy (where t indicates the

interaction strength) have been proposed in the literature for the past 20 years. All

of the strategies help in constructing test suites with minimal test cases to cover all

intended interaction strength. Strategies such as GTWay [1], Automatic Efficient

Test Generator (AETG) [2], Myra Implementation of AETG (mAETG) [3], In-

Parameter Order (IPO) [4] , In-Parameter-Order General (IPOG) [5], Multi-Core

IPOG (MC-IPOG) [6] and Jenny [7] generate test cases for uniform strength t-

way (i.e. all parameters having interact uniformly among each others). In some

cases, many researchs have demonstrated the need for generating variable-

strength t-way combinations of inputs. As a result, newly developed t-way

strategies have been proposed such as Simulated Annealing (SA) [8], Ant Colony

System (ACS)[9] , Particle Swamp Optimization (PSO)[10] and Harmonic

Search Strategy (HSS) [11] to consider the variable strength parameter

interaction. The emergence of Artificial Intelligent (AI) based strategies has

shown good results in term of producing optimal test case size. Based on such

alluring prospects, we study Bees Algorithm as the basic for t-way test generation.

Adopting other competing optimization algorithm other than SA, ACS, PSO and

HSS might give rise to new perspectives on t-way test generation. In this paper,

we discuss the implementation and the results of our experiment against other AI

based t-way strategies.

The rest of this paper is organized as follows. Section 2 presents the theoretical

background of t-way strategies. Section 3 introduces the Bees Algorithm, while

section 4 discusses the implementation and experiment results. Lastly in section 5

we present our conclusion.

2 Theoretical Background

Over many years, sampling based strategies such as equivalence partitioning,

boundary value analysis and decision table have been commonly used for test

generation. Although helpful in detecting faults for some class of systems, these

strategies do not detect faults due to interaction amongst input parameters. As a

result, t-way strategies have been introduced. Here, t represents the interaction

strength between parameters. In general, a uniform strength t-way constructs the

basic of interaction testing. In uniform strength t-way, all of the parameters are

tested to interact uniformly with t other parameters. For example, in a 2-way

interaction test suite for a system with 5 input parameters, each of the parameter’s

value will have to be tested to interact with another parameter at least once. If we

increase interaction strength to 3, that is, 3-way interaction, all parameters’ value

will be tested with another 2 parameters’ value at least once.

Mohd Hazli Mohamed Zabil et al. 118

Uniform strength produces decent test cases for interaction testing, however, in

some cases, we might want to increase the interaction strength for a sub set of

parameters in the system. In a testing scenario, a good tester knows, based on

experience or requirement documents, that a particular interaction of parameter

could give significant impact to the whole system, should failure occurs. Here,

there is a need to rigorously test that particular sub set so as to increase the

confidence level of the system, termed variable strength. As a result, on top of

uniform strength, stronger interaction strength could be assign accordingly to a

sub-parameter with higher risk of failure. For illustration, Fig.1(a) and Fig.1(b)

below show the features of uniform strength and variable strength interaction

respectively.

Fig.1.Uniform and Variable strength interaction

For another illustration, consider a system under test (SUT) with 4 configurable

parameters namely, A, B, C and D. Each parameter has 2 possible values as

described in Table 1. To perform 2-way interaction test, all 2-way interactions for

the 4 parameters A, B C and D have to be covered including that of {AB, AC, AD,

BC, BD, CD}. The complete set of the interaction tuples are shown in Table 2.

As highlighted earlier, the t-way testing strategy addresses the issue of

combinatorial explosion. Considering exhaustive generation of test cases for the

said configuration, we consider all possible combination for each value of each

parameter (see Table 3). Here, when the configuration increases, the size of the

test case increase exponentially. For example, exhaustive test for a SUT with 5

parameters with 2 values for each parameter will give us 2
5
 = 32 test cases. For

SUT with 10 parameters with 3 values for each parameter gives us 2
10

 = 59,049

test cases. If we estimate that each test case needs even only 1 minute to execute,

we need more than 41 days to perform such a test. For this reason, sampling

System Under Test

P1 Pn P2 . . .P5

 . . .

t=a

t=b

Interaction strength, t

where 0< t < n

System Under Test

 P1 Pn P2

(a) Uniform interaction with strength t for n

parameters
(b) Variable strength interaction, with t= a

for all parameters (P1 to Pn), and t=b for 5

sub parameters

119 Implementing a T-Way Test Generation

mechanism based on t-way testing is used to reduce the number of test cases, but

at the same time give adequate coverage for the intended t-way interaction.

Table1: An example of a system with 4 parameters with 2 values

Parameters A B C D

Values
a1 b1 c1 d1

a2 b2 c2 d2

Table 2: Complete interaction sets to be covered for 2-way testing

Parameters Interaction set

AB a1b1, a1b2,a2b1, a2b2

AC a1c1, a1c2,a2c1,a2c2

AD a1d1, a1d2,a2d1,a2d2

BC b1c1, b1c2,b2c1,b2c2

BD b1d1, b1d2,b2d1,b2d2

CD c1d1, c1d2,c2d1,c2d2

Table 3: Exhaustive test suite

Test Case A B C D

1 a1 b1 c1 d1

2 a1 b1 c1 d2

3 a1 b1 c2 d1

4 a1 b1 c2 d2

5 a1 b2 c1 d1

6 a1 b2 c1 d2

7 a1 b2 c2 d1

8 a1 b2 c2 d2

9 a2 b1 c1 d1

10 a2 b1 c1 d2

11 a2 b1 c2 d1

12 a2 b1 c2 d2

13 a2 b2 c1 d1

14 a2 b2 c1 d2

15 a2 b2 c2 d1

16 a2 b2 c2 d2

Mohd Hazli Mohamed Zabil et al. 120

At the end of test case generation, the final test suite, F, should cover every t

combinations of parameter value configurations for at least once, the final test

suite can be abstracted to covering array notation [4-5] shown in Equation 1.

F = CA(N, t, C) (1)

where,

 N = the number of test data inside the final test suite.

 t = the interaction strength

 C = value configuration can be represented as following:

 v1
p1

,v2
p2

,…..,vn
pn

which indicate that there are p1 parameters with v1

 values, p2 parameters with v2 values and so on.

Using the aforementioned notation, a 2-way interaction for 4 input parameters

with each parameter has 2 possible values can be written as CA(N, 2, 2
4
). When a

system consists of parameters with mixed number of values, we refer this type of

covering array as mixed covering array (MCA). For example MCA(N, 2, 2
2
 3

2
 4

1
)

refers to a covering array of strength 2, with two 2-valued parameters, two 3-

valued parameters and one 4-valued parameters.

With additional notation for variable strength, covering array notation for

variable strength interaction, (VCA) can be denoted by

VCA(N, t, C, S) (2)

 where

 N = the number of test data inside the final test suite.

 t = the dominant interaction strength

 C = value configuration can be represented as following:

 v1
p1

,v2
p2

,…..,vn
pn

 which indicate that there are p1 parameters with

v1 values, p2 parameters with v2 values and so on.

 S = the multi-set of disjoint covering array with strength larger than t

represented using notation similar to CA i.e. CA(N, t, C).

3 The Bees Algorithm (BA)

Bees Algorithm (BA) is a relatively new nature inspired, population based

algorithm [12]. BA is developed based on the foraging behavior of honey bees. In

order to forage food, a group of scout bee is sent to search the area around the

121 Implementing a T-Way Test Generation

hive for flower patch. Bees can travel up to 10 kilometers in a day. The scout bees

later will return to the hive and present its findings to the other bees (referred as

unemployed bees) in a movement known as the waggle dance. By comparing the

information gained in the waggles dance by scout bees, the unemployed bees will

determine which flower patch has high quality. The quality of the nectar and its

range from the hive are among factors considered to determine the chosen patches.

More bees are sent to the more promising patches (high quality) and fewer bees

are sent to other patches. The food level in the hive and the amount of nectar in

the selected flower patches are monitored continuously and the information will

be used in the next waggle dance. Inspired by the foraging behavior of honey bees,

Bees Algorithm is developed. The basic form of Bees Algorithm is depicted in Fig.

2.

1. Initialize population with random solutions (n)

2. Evaluate fitness of the population

3. While (stopping criteria not met)

4. Select (m) sites for neighborhood search (ngh)

5. Recruit bees (nep and nsp) for selected site (e best elite sites, m-e non

elite sites)

6. Select the fittest bee from each patch

7. Assign remaining bees to search randomly and evaluate their fitness

8. End While.

Fig.2: Bees Algorithm in its basic form.

In general, there are six parameters involved in performing BA, the initial

population size n, the best solution for improvement m, elite solution e, number of

bees for local search on elite solution nep, number of bees for local search on non

elite solution nsp and the neighborhood size for local search ngh. The algorithm

starts with selecting n random solutions. Then, the fitness of the initial solution is

evaluated. From here, the best m solution is selected for neighborhood search (i.e.

local search). From the best m number of solutions selected from n, the best e

solution (elite solution) will be sent with nep bees. These nep bees, will try to

improve and find a better solution around the current selected solution. To avoid

local optima trap, the non-elite solution (m-e) will be sent with nsp bees. Similar

to elite solution, nsp bees also try to improve the current solution, should there be

a better solution. If a better solution if found by either nep or nsp bees, the better

solution will replace the respective solution. In step 7, the solution is re-evaluated

and sorted according to its fitness. The remaining bees in the population will

randomly select a solution again and be sorted to get the best m solution. The

process will be repeated until the criteria are met. In our case, the algorithm will

keep looping until all of the intended interactions are covered.

Mohd Hazli Mohamed Zabil et al. 122

Although BA is considered as a new swarm-based algorithm, BA has been

used to solve many optimization problems. BA shows promising results in term of

effectiveness, problem scale and performance published as in [13], [12], [14], [15],

[16]. Although many of the BA implementation mentioned is functional

optimization, BA is claimed suitable to solve not only functional, but also

combinatorial optimization problems [12]. These factors motivate us to adopt BA

further for t-way test data generation.

4 Implementation and Experiment Results

In order to generate t-way test cases, our strategy is divided into two main parts.

The first part is the data part where all the information about the test case is stored.

This includes the interaction set which stores all the interaction that needs to be

covered and the test suite set (stores all the test case generated by BA). The

interaction set is initialized at the beginning of the strategy. For experiment in this

paper, the interaction set is generated using direct forward loop approach to

generate all possible t-way interaction for the intended parameter-values. An

example for generated interactions for 2-way, 4 parameters with each parameter

having two values is shown in Table 2. The test case set is initialized as an empty

set. Then, the test case set will store the best test case generated by BA in every

cycle of the algorithm. At the end, the test set represents the best test suite for the

intended configuration.

The second part is the optimization part. In this part, Bees Algorithm is

implemented. At first, we initialized all the parameters needed for BA. Table IV

shows the six parameters that are being used in our implementation. In the first

step, a number of n test cases were generated randomly and its fitness sorted

accordingly. In principle, the fitness of each test case is calculated by the ratio

between number of interaction it covers with the number of maximum interaction

can be covered. While there are still uncovered interactions, m best test cases from

n which was generated randomly will be analyzed. For each test case in m, the

algorithm tries to improve the test case by modify the test case to cover more

interaction set via a process called neighborhood search. In the neighborhood

search, nep improvement attempts will be performed to the elite test cases, while

nsp improvement attempt will be performed to the non-elite test cases. If any

improvement was made, the algorithm will update the fitness of the test case in

the selected m. a new set of n-m test case then will be re-generated for the next

cycle.

In each cycle, every time a test case is selected, the interaction covered by the

respective test case will be removed from the interaction test set. At the same time,

the selected test case will be added to the test suite set. Thus, the number of

interaction set will be reduced in every cycle. The algorithm will keep running

until the interaction set is empty (all interaction set has been covered).

123 Implementing a T-Way Test Generation

Table 4: BA parameters

Parameter Value Description

n 20 Number of random test case generated

m 5 Selected test case with best coverage

for neighborhood search

e 2 Elite test cases

nep 10 Number of improvement attempt for

each elite test case

nsp 5 Number of improvement attempt for

each non-elite site

ngh 0.5 Local search area size for nep and nsp

For the purpose of performance comparison, we benchmark our strategies with

existing AI-based strategies. The results of existing AI-based strategies are

obtained from the published works of the respective strategies. We have

implemented our strategies in JAVA (Netbean 7.0) on a desktop PC running

Windows XP SP3 with Intel Core2Duo and 2GB RAM.

We present our results in Table 5 and Table 6 below. For Table 5, we compare

with other exiting AI-based strategies (HSS, GA, SA, ACA, PSTG), for low

strength (2<t<3). For Table 6, we compare the results for CA(N, t,10,2) where t

varied from 2 to 10 with existing strategies (AI and computational approaches). In

the Tables 5 and 6, we have use Not Available (NA) to denote that there are no

published result for the strategy and configuration of interest and Not Support (NS)

to denote that the configuration is not supported by the given strategy.

Table 5: Comparison BA test suite against existing AI-based strategies

Configuration BA HSS SA GA ACA PSTG

CA(N, 2,4,3) 9 9 9 9 9 9

CA(N, 2,13,3) 19 18 16 17 17 17

CA(N, 2,10,10) 183 155 NA 157 159 NA

CA (N, 2, 10,5) 47 43 NA NA NA 45

CA(N, 3,6,3) 42 39 33 33 33 42

CA(N, 3,6,4) 108 70 64 64 64 102

CA(N, 3,6,5) 198 199 152 125 125 NA

CA(N, 3,7,5) 227 236 201 218 218 229

Mohd Hazli Mohamed Zabil et al. 124

Table 6: CA(N, t, 10,2) with t varied from 2 to 10

t BA HSS PSTG IPOG Jenny TConfig

2 8 7 8 10 10 9

3 18 16 17 19 18 20

4 39 37 37 49 39 45

5 85 81 82 128 87 95

6 162 158 158 352 169 183

7 298 298 NS NS 311 NS

8 503 498 NS NS 521 NS

9 545 512 NS NS 788 NS

10 1024 1024 NS NS 1024 NS

Referring to Table 5 and Table 6, although not the best, BA produces

comparable results against other strategies. In Table IV, the size of test suites

produce is larger as compared to the other AI-based strategies. We believe the

results can be improved upon fine-tuning the parameters in BA. In Table VI, BA

manages to get 2 optimum results which are comparable to that of HSS and Jenny.

5 Conclusion

In this paper, we have discussed our preliminary works on adopting Bees

Algorithm to generate interaction testing test data. We discuss the design of the

algorithm and share our experiment results. As part of our future work, we are still

optimizing our strategies to demonstrate the effectiveness with known case study,

support variable strength interaction as well as to incorporate seeding and

constraints while generating t-way test data.

ACKNOWLEDGEMENTS

This paper is partly funded by Universiti Tenaga Nasional Training Grant, the

UMP RDU Short Term Grants: “Development of Test Generation, Execution, and

Coverage Tools for Postgraduate & Undergraduate Teaching of Software Testing”

and the MOE ERGS Grant: “CSTWay: A Computational Strategy for Sequence

Based T-Way Testing”.

References

[1] M. F. J. Klaib. 2009. Development of An Automated Test Data Generation

and Execution Strategy Using Combinatorial Approach, Ph.D, School of

Electrical and Electronic Engineering, Universiti Sains Malaysia, 2009.

125 Implementing a T-Way Test Generation

[2] D. M. Cohen, S. R. Dalal, A. Kajla, and G. C. Patton. 1994. The Automatic

Efficient Test Generator (AETG) System, Proceedings of the 5th International

Symposium on Software Reliability Engineering, pp. 303 –309.

[3] D. M. Cohen, S. R. Dalal, M. L. Fredman, and G. C. Patton. 1997. The AETG

system: an approach to testing based on combinatorial design,” IEEE

Transactions on Software Engineering, vol. 23, no. 7, pp. 437 –444.

[4] Y. Lei and K.-C. Tai.1998. In-Parameter-Order: A Test Generation Strategy

for Pairwise Testing in Proceedings of the 3rd IEEE International Symposium

on High-Assurance Systems Engineering, pp. 254–261.

[5] Y. Lei, R. Kacker, D. R. Kuhn, V. Okun, and J. Lawrence. 2007. IPOG: A

General Strategy for T-Way Software Testing, Proceedings of the 14th Annual

IEEE International Conference and Workshops on Engineering of Computer-

Based Systems, 2007, pp. 549 –556.

[6] M.I. Younid and K.Z. Zamli. 2010. MC-MIPOG: A Parallel t-Way Test

Generation Strategy for Multicore Systems, ETRI Journal, vol. 32. Taejon,

COREE, REPUBLIQUE DE: Electronics and Telecommunications Research

Institute.

[7]Bob Jenkin. 2012. “Jenny" [Online]. Available:

http://burtleburtle.net/bob/math/jenny.html. [Accessed: 21-Jun-2012].

[8] M. B. Cohen, C. J. Colbourn, and A. C. H. Ling. 2003. Augmenting Simulated

Annealing to Build Interaction Test Suites, Proceedings of the 14th

International Symposium on Software Reliability Engineering, pp. 394-405.

[9] X. Chen, Q. Gu, A. Li, and D. Chen. 2009. Variable Strength Interaction

Testing with an Ant Colony System Approach, Proceedings of the Asia

Pacific Software Engineering Conference, pp. 160 –167.

[10]B. S. Ahmed, K. Z. Zamli, and C. P. Lim. 2011. Constructing a T-Way

Interaction Test Suite Using the Particle Swarm Optimization Approach,

International Journal of Innovative Computing and Information Control, vol.

8, no. 1, pp. 1–10.

[11]A. R. A. Alsewari and K. Z. Zamli. 2012. Design and Implementation of a

Harmony-Search-Based Variable-Strength t-way Testing Strategy with

Constraints Support, Information Software Technolology, vol. 54, no. 6, pp.

553–568.

[12]D.T. Pham, A. Ghanbarzadeh, E.Koc, S.Otri, S.Rahim, and M.Zaidi. 2006.

The Bees Algorithm - A Novel Tool for Complex Optimization Problems,

Proceedings of Innovative Production Machines and Systems Virtual

Conference, pp. 454-461.

[13]S. Anantasate and P. Bhasaputra. 2011. A Multi-Objective Bees Algorithm

for Multi-Objective Optimal Power Flow Problem, Proceedings of the 8th

Mohd Hazli Mohamed Zabil et al. 126

International Conference on Electrical Engineering/Electronics, Computer,

Telecommunications and Information Technology, pp. 852 –856.

[14]D. T. Pham, M. Castellani, and A. A. Fahmy. 2008. Learning the Inverse

Kinematics of a Robot Manipulator using the Bees Algorithm, Proceedings of

the 6th IEEE International Conference on Industrial Informatics, pp. 493 –

498.

[15]D. T. Pham, S. Otri, A. Ghanbarzadeh, and E. Koc. 2006. Application of the

Bees Algorithm to the Training of Learning Vector Quantisation Networks for

Control Chart Pattern Recognition, Proceedings of the Information and

Communication Technologies, vol. 1, pp. 1624 –1629.

[16]D. T. Pham and M. Kalyoncu. 2009. Optimisation of a Fuzzy Logic

Controller for a Flexible Single-link Robot Arm using the Bees Algorithm,

Proceedings of 7th IEEE International Conference on Industrial Informatics,

pp. 475 –480.

