
Int. J. Advance Soft Compu. Appl, Vol. 5, No. 3, December 2013

ISSN 2074-8523; Copyright © SCRG Publication, 2013

Variable-Strength Interaction for T-Way Test

Generation Strategy

Syahrul A. C. Abdullah, Zainal H. C. Soh, and Kamal Z. Zamli

Faculty of Electrical Engineering,

Universiti Teknologi MARA (UiTM), Shah Alam, Malaysia.

e-mail: bekabox181343@salam.uitm.edu.my

Faculty of Electrical Engineering,

Universiti Teknologi MARA (UiTM), Pulau Pinang, Malaysia.

e-mail: zainal872@ppinang.uitm.edu.my

Faculty of Computer Systems & Software Engineering,

Universiti Malaysia Pahang (UMP), Pahang, Malaysia.

e-mail: kamalz@ump.edu.my

Abstract

 Often, t-way testing is usually adopted to trigger faults due to interactions. As a
result, a myriad of useful t-way test generation strategies have been developed in
order to generate t-way interaction test suite that is small in size while maintaining
adequate t-way interaction coverage. Even though finding an efficient strategy to
construct an optimal test suite is very valuable, another aspect to consider is the
cost benefits of running the tests, i.e. at high level of interaction strength; the test
suite size can become enormous. To balance the need for stronger interaction with
the cost of running the tests, variable-strength interaction has been recommended.
Hence, to enable support for construction of test suite with variable-strength
interaction, a step by step procedure that extends our t-way test generation strategy,
called Test Suite Generator (TSG) is highlighted. Benchmarking results against
most existing strategies that support variable-strength interaction demonstrate that
TSG is able to give competitive results.

Keywords: combinatorial testing, software testing, t-way testing, t-way minimization
strategy, variable-strength interaction.

1 Introduction

One of the key challenges in software testing is to identify selection of input values to test as

most software systems have a very high range of valid and invalid inputs. Moreover, it is not

always feasible to test for all the input values because of constraint in cost, resources and time.

To balance between these desirable but conflicting features, software tester wishes that the

testing activities will eventually demonstrate that the software systems are fit for purpose and to

Syahrul A. C. Abdullah et al. 66

detect defects. However, the relevance is to complete some testing before time to deliver the

software product to the market as it is not always possible to test everything.

Furthermore, the associate risk with testing must also be well comprehended. A successful

testing can be cost effective and quick but in the case of discovering a failure, it will take a

substantial time to rectify the code which had errors and to do retesting. As a result, often the test

activities are guided by the risk analysis where it covers the testing of essential part of software

systems with a list of test that must be executed first and in which sequence.

In the context of t-way testing, often, the size of t-way interaction test suite at high level of

interaction strength can become enormous. Even though triggering all the faults is important,

much research demonstrates that the percentage of faulty interaction from four-way to seven-way

interactions among variables is relatively rare [1-3]. Thus, as with most aspects of engineering,

trade-offs must be considered and must occur. Hence, to balance the need for stronger interaction

strength in t-way interaction test suite with the cost of running the tests, variable-strength

interaction has been recommended. This approach is often favored because of the compromise in

term of test suite size where the strategy focuses testing where it has the most potential value,

which usually is associated with the risk analysis.

In the previous work, a t-way test generation strategy called Test Suite generator (TSG) has

been implemented using a multilevel Greedy Algorithm [4-6]. To enable support for construction

of test suite with variable-strength interaction, this paper discusses a step by step procedure taken

to extend TSG with this feature. Benchmarking results demonstrate that TSG produces

competitive results while addressing support for variable-strength interaction.

This paper is organized as follows. Section 2 outlines the related works on variable strength

t-way test generation strategy. Section 3 introduces the step by step procedure taken to convert

the existing strategy. Section 4 elaborates the benchmarking of TSG against most existing

strategies that support variable-strength interaction. Finally, Section 5 provides the conclusion.

2 Related Work on Variable-Strength Interaction

There are myriad of useful variable strength t-way test generation strategies that have been

implemented in order to sample test cases and construct a variable-strength t-way interaction test

suite for t-way testing. Initially, it was recommended by Cohen in a strategy called Simulated

Annealing (SA) as the strategy adopted Simulated Annealing algorithm to construct the test suite

with variable-strength interaction [7]. Eventually, many strategies begin to support construction

of test suite with variable-strength interaction like Ant Colony System (ACS), Density, Input

Parameter Order Generalized (IPOG), ParaOrder, PICT, Test Vector Generator (TVG), VS-

PSTG (Variable-Strength Particle Swarm Test Generator) and WHITCH (IBM Intelligent Test

Case Handler).

Like SA, ACS [8] and VS-PSTG [9] used AI Search technique in sampling and selection of

the test cases to construct the variable-strength t-way interaction test suite. As the name suggests,

ACS used Ant Colony Optimization while VS-PSTG used Particle Swarm Optimization (PSO)

in their implementation. These strategies often able to produce very good results in term of test

suite size as their implementation are able to escape local optimal.

67 Variable-Strength Interaction for T-Way Test

On the other hand, the rest of the above-mentioned strategies used pure computational

approaches. The difference among them is on the design technique used, IPOG [10] and

ParaOrder [11] are algorithms that implement one-parameter-at-a-time design technique while

Density [11], PICT [12], TVG [13] and WHITCH [14] are based on one-test-at-a-time design

technique. Both ParaOrder and Density consider actual interaction relationship in their

implementation and they are able to produce acceptable results in certain special inputs.

PICT is a public domain testing tool developed by Microsoft. Often, the PICT generated test

suite is not optimal since the core generation algorithm is based on some random selection.

Unlike PICT, as far as TVG and WHITCH are concerned, there is limited literature on the

implementation. However, based on our experience in running the tool, TVG generation

algorithm is based on input-output relationship, while WHITCH generation algorithm is based

on exhaustive search, which may not conducive to run for large input parameters.

3 Approach and Method

The t-way test generation strategy is usually divided into two phase, generation of uncovered

interaction elements and selection of test case to cover as many number of uncovered interaction

elements. Generating candidate test cases to select a decent test case that conforms to certain

rules by using the characteristics of the running algorithm and later on becomes part of a suitable

subset of t-way interaction test suite is a multi-objective optimization problem.

The objective of this kind of minimization strategy is to generate a t-way interaction test suite

that has full interaction coverage. This means covering all possible interaction at least once by

the selected test cases while trying to minimize the total number of test cases as small as possible

by maximizing the fitness (the total number of interaction elements covered) of each selected test

case.

Hence, the size of the test suite is optimal based on the minimum total number of test cases

when each interaction elements is covered only once by any of the test case within the test suite.

To further address this matter, the following sub-sections present the notation and the

implementation flavors.

3.1 Notation

To improve the t-way test suite abstractions, a common structure to describe and formulate these

interactions is adopted [9], which is as follows: (1) Input parameters (p) with a fixed constant

number of values (v) is represented by Covering Array, i.e. CA (N: t, v
p
), where t implies the

interaction strength of parameters with the corresponding generated test suite size (N). (2) Input

parameters with a different or mixed number of values are represented by Mixed Covering

Array, i.e. MCA (N: t, v1
p1

v2
p2

 … vn
pn

). (3) The variable-strength notation VSCA (N: t, v1
p1

v2
p2

… vn
pn

, {C}) represents covering array (either as CA or MCA) of strength t containing C, which

is a subset of the p columns each of strength >t. C is a covering array and can be represents either

as CA or MCA.

Syahrul A. C. Abdullah et al. 68

3.2 The TSG strategy

Fig. 1: Overview of the TSG strategy and its implementation

Referring to Fig. 1, addressing the selection of test case in TSG is by using a multilevel Greedy

Algorithm [4]. Here, when there is more than one value (candidate test case) that satisfies best

that is maximum fitness, a decision on how to choose one of these values is delayed until it

satisfies certain rules. In the implementation, all best values are stored inside a container and

delayed breaking the rules until the size of container, s is bigger than 100. This setting is based

on the implementation of another greedy algorithm called Automatic Efficient Test Generator

(AETG), which ran a few experiments to select the minimum value of s [15].

Therefore, to enable support for variable-strength interaction, the generation of uncovered

interaction elements’ procedure in TSG (as shown in Fig. 1) is updated so that it can able to

support multiple strengths in its constructor. Hence, it can generate variable-strength interaction

elements.

To describe the procedure in detail, it is necessary to state that the inner workings of TSG are

based on set operations. In the beginning, based on sets of input parameters and strength, t, (or

strengths for variable-strength interaction), TSG computes using Cartesian product to generate a

truth table.

The table contains lists of Boolean true and false, which are later used to generate

combination of values to be covered, called uncovered interaction elements. The generation of

interaction elements is described below:

(i) TSG selects lists that contain t-number of Boolean true.

(ii) For every list, TSG enumerates its elements.

(iii)For every element, if Boolean true, TSG loads set of input parameters indicated by

element’s position.

Generation of

uncovered interaction

elements

generates

generates

Uncovered

interaction

elements

Variable-strength

interaction test

cases

loads

loads

match and updates

Selection of test case

Input parameters and

strengths

Truth table

generates

loads

TSG

69 Variable-Strength Interaction for T-Way Test

(iv) Based on sets of input parameters, TSG computes using Cartesian product to generate

uncovered interaction elements.

(v) Uncovered interaction elements are grouped according to their respective list for

easier search later on in sampling and selection of test case.

4 Evaluation

Evaluation of the TSG focuses on the efficiency of the strategy to generate better test suites size

against existing strategies that support variable-strength interaction. Based on well-known

standard benchmark configurations, TSG’s generated test suite size is compared with other

strategies, including ACS, Density, IPOG, ParaOrder, PICT, SA, TVG, VS-PSTG and

WHITCH. They are selected because their results for variable-strength interaction strengths are

available publically.

Hence, three sets of experiments that are used for the comparison by Ahmed [9], Xiang [8],

Ziyuan [11] and Cohen [7], are adopted as shown in Table 1, Table 2 and Table 3. All the results

for above-mentioned strategies are also taken from the adopted experiments [7-9, 11]. By

adopting the same experiments that have been used in other research, an objective comparison

can be made with existing strategies (i.e. in terms of the generated test suite size). Cells marked

NA (Not Available) indicates that the result is unavailable due to the lengthy test generation time

while cells marked NS (Not Supported) indicates that the tool cannot generate the test suite for

the specific configuration.

The first experiment caters for uniform input parameters that is a fixed constant number of

values, and the remaining two sets of experiments were for input parameters with a mixed

number of values. The experiments were designed to compare the size of the generated test suite

with varying of the number of parameters (P), the number of values (V) and the interaction

strength (t) but focusing on Mixed Covering Array (MCA). Referring to Table 1, for the uniform

input parameters using configuration, , the test suite size results for TSG

were only able to get two optimum test suite size as shown in the shaded area with italics font.

While for the mixed input parameters using configuration, and

 (referring to Table 2 and Table 3 respectively), the test suite size

results for TSG was quite satisfactory and competitive as compared to other existing strategies.

The TSGCR also has a majority number of second best solutions in terms of the most optimum

test suite size as shown in the shaded area with italics font.

As shown in all these tables, in decreasing order by performance of generated test suite size,

in general, the strategy that used AI Search technique, SA, ACS and VS-PSTG respectively are

able to get the most optimal test suite size in the specified configurations. However, in mixed

input parameters, TSG are able to produce better results than VS-PSTG. Hence, TSG appears to

produce competitive results like the rest of the strategies.

Syahrul A. C. Abdullah et al. 70

5 Conclusion

Evaluation of the TSG focuses on the efficiency of the strategy to generate better test suites size

against existing strategies that support variable-strength interaction. Three different sets of

experiments were performed. The main intention here was to show that the strategy was

sufficiently competitive as compared to other strategies in terms of the generated test suite size.

The results show that TSG is able to compete with other existing strategies in supporting

variable-strength interaction.

ACKNOWLEDGEMENTS
This research is partially funded by the generous ERGS Grant: CSTWay: A Computational

Strategy for Sequence Based T-Way Testing” from Ministry of Education (MOE), Malaysia and

Research Intensive Faculty (RIF) grant – “Integrating Seamless Crash Recovery Support For T-

way Test Generation Strategy” (File No : 600-RMI/DANA 5/3/RIF (304/2012)) from Research

Management Institute (RMI), Universiti Teknologi MARA (UiTM), Malaysia.

71 Variable-Strength Interaction for T-Way Test

Table 1: Sizes of VS interactional test suites for the configuration

{C}
Number of

interaction elements
TSG ACS Density IPOG ParaOrder PICT SA TVG VS-PSTG WHITCH

() 945 20 19 21 21 33 35 16 22 19 31

 972 27 27 28 27 27 81 27 27 27 48

 999 27 27 28 30 33 729 27 30 27 59

 1,026 28 27 28 33 33 785 27 30 27 69

 1,053 33 27 32 39 27 105 27 35 30 59

 1,215 40 38 40 39 45 131 33 41 38 62

 1,485 48 40 46 51 44 1,376 34 53 45 114

 1,485 48 45 46 53 49 146 34 48 45 61

 1,890 51 48 53 58 54 154 41 54 49 68

 3,213 59 57 60 65 62 177 50 62 57 94

 13,230 82 76 70 NS 82 83 67 81 74 132

Syahrul A. C. Abdullah et al. 72

Table 2: Sizes of VS interactional test suites for the configuration

{C}

Number of

interaction

elements

TSG ACS Density IPOG ParaOrder PICT SA TVG
VS-

PSTG
WHITCH

() 663 39 41 41 43 49 43 36 44 42 48

 727 64 64 64 83 64 384 64 67 64 97

 1,507 125 104 131 147 141 781 100 132 124 164

 788 125 125 125 136 126 750 125 125 125 145

 ,

 852 125 125 125 136 129 8,000 125 125 125 194

 4,290 197 201 207 215 247 1,266 171 237 206 254

 843 180 180 180 180 180 900 180 180 180 188

 7,080 239 255 256 NS 307 261 214 302 260 312

Table 3: Sizes of VS interactional test suites for the configuration

{C}

Number of

interaction

elements

TSGCR ACS Density IPOG ParaOrder PICT SA TVG
VS-

PSTG
WHITCH

() 3,010 100 100 100 101 100 100 100 101 102 NA

 33,790 100 100 100 100 103 940 100 103 105 NA

 73,990 411 396 401 NS 442 423 304 423 481 NA

73 Variable-Strength Interaction for T-Way Test

References

[1] D. R. Kuhn and M. J. Reilly. 2002. An Investigation of the Applicability of

Design of Experiments to Software Testing, Proceedings of the 27th Annual

NASA Goddard Software Engineering Workshop.

[2] D. R. Kuhn, D. R. Wallace and A. M. Gallo, Jr. 2004. Software Fault

Interactions and Implications for Software Testing, IEEE Transactions on

Software Engineering, vol. 30, pp. 418-421.

[3] D. R. Kuhn and V. Okum. 2006. Pseudo-Exhaustive Testing for Software,

Proceedings of the 30th Annual IEEE/NASA Software Engineering

Workshop.

[4] S. A. C. Abdullah, Z. H. C. Soh and K. Z. Zamli. 2012. Design and

Implementation of a Multilevel Greedy Algorithm on t-way Minimization

Strategy, Proceedings of the 6th Malaysian Software Engineering

Conference (MySEC 2012).

[5] N. Bouhmala and X. Cai. 2008. A Multilevel Greedy Algorithm for the

Satisfiability Problem, Greedy Algorithms, InTech.

[6] M. Chen. 2008. A Greedy Algorithm with Forward-Looking Strategy,

Greedy Algorithms, InTech.

[7] M. B. Cohen, P. B. Gibbons, W. B. Mugridge, C. J. Colbourn and J. S.

Collofello. 2003. A Variable Strength Interaction Testing of Components,

Proceedings of the 27th Annual International Computer Software and

Applications Conference (COMPSAC 2003), pp. 413-418.

[8] C. Xiang, G. Qing, L. Ang and C. Daoxu. 2009. “Variable Strength

Interaction Testing with an Ant Colony System Approach”, Proceedings of

the Asia-Pacific Software Engineering Conference (APSEC 2009), pp. 160-

167.

[9] B. S. Ahmed and K. Z. Zamli. 2011. A Variable Strength Interaction Test

Suites Generation Strategy Using Particle Swarm Optimization, Journal of

Systems and Software, vol. 84, pp. 2171-2185.

[10] Y. Lei, R. Kacker, D. R. Kuhn, V. Okun and J. Lawrence. 2007. IPOG: A

General Strategy for t-Way Software Testing, Proceedings of the 14th

Annual IEEE International Conference and Workshops on the Engineering

of Computer-Based Systems.

[11] W. Ziyuan, X. Baowen and N. Changhai. 2008. Greedy Heuristic

Algorithms to Generate Variable Strength Combinatorial Test Suite,

Proceedings of the 8th International Conference on Quality Software (QSIC

2008), pp. 155-160.

[12] J. Czerwonka. 2006. Pairwise Testing in Real World. Practical Extensions to

Test Case Generators, Proceedings of 24th Pacific Northwest Software

Quality Conference, pp. 419-430.

[13] P. J. Schroeder, K. Eok, J. Arshem and P. Bolaki. 2003. Combining

Behavior and Data Modeling in Automated Test Case Generation,

Syahrul A. C. Abdullah et al. 74

Proceedings of 3rd International Conference on Quality Software, pp. 247-

254.

[14] A. Hartman, T. Klinger and L. Raskin. 2013. IBM Intelligent Test Case

Handler. Available: http://www.alphaworks.ibm.com/tech/whitch (last

accessed 01.01.2013)

[15] D. M. Cohen, S. R. Dalal, M. L. Fredman and G. C. Patton. 1997. The

AETG System: An Approach to Testing Based on Combinatorial Design,

IEEE Transactions on Software Engineering, vol. 23, pp. 437-444.

