

Int. J. Advance. Soft Comput. Appl., Vol. 1, No. 2, November 2009
ISSN 2074-8523; Copyright © ICSRS Publication, 2009
www.i-csrs.org

Advances of Soft Computing Methods
in Edge Detection

Amir Atapour Abarghouei, Afshin Ghanizadeh, and Siti Mariyam
Shamsuddin

Soft Computing Research Group
Universiti Teknologi Malaysia

Skudai, Johor Bahru
e-mail: afshin.ghanizadeh@gmail.com, atapour_80@yahoo.com,

mariyam@utm.my

Abstract

 Artificial Intelligence (AI) techniques are now commonly used to
solve complex and ill-defined problems. AI a broad field and will
bring different meanings for different people. John McCarthy would
probably use AI as “computational intelligence”, while Zadeh
claimed that computational intelligence is actually Soft Computing
(SC) techniques. Regardless of its definition, AI concerns with tasks
that require human intelligence which require complex and
advanced reasoning processes and knowledge. Due to its ability to
learn, handle incomplete or incomprehensible data, deal with non-
linear problems, and perform reasonable tasks very fast, AI has been
used in diverse applications in control, robotics, pattern recognition,
forecasting, medicine, power systems, manufacturing, optimization,
signal processing, and social sciences. However, in this paper, we
will focus on Soft Computing (SC), one of the AI influences that
sprang from the concept of cybernetics. The main objective of this
paper is to illustrate how some of these SC techniques generally
work on detecting the edges. The paper also outlines practical
differences among these techniques when they are applied to solving
the problem of edge detection.

Keywords: Artificial Intelligence, Soft Computing, Ant Colony Optimization,
Gravitational Search Algorithm, Edge Detection.

Amir Atapour et al. 2

1 Introduction

The term Artificial Intelligence (AI) refers to the intelligence of machines.
Conventional AI research focuses on an attempt to mimic human intelligent
behavior by expressing it in language forms or symbolic rules. Conventional AI
basically manipulates symbols on the assumption that such behavior can be stored
in symbolically structured knowledge bases. Perhaps the most successful
conventional AI product is the knowledge-based system or expert system (ES).
Through many years of research, a large number of techniques have been
developed in the field of AI to solve the most difficult problems in computer
science. However, it should be noted that merely solving a problem does not
indicate complete understanding of a situation. Understanding is one the main
requirements for intelligence. Therefore an AI technique, by which even difficult
problems are solved, still doesn’t provide actual intelligence. On the other hand,
modern AI inevitably depends on personal judgment, and it is true that many
books on modern AI describe neural networks and perhaps other soft computing
components.

Soft Computing can be considered as a field dedicated to problem solving
methods capable of simultaneously exploiting numerical data and human
knowledge, using mathematical modeling and symbolic reasoning systems. It is
tolerant of imprecision, uncertainty, and partial truth. The SOUL of SC is to make
computers as SOFT as the human brain, and is capable of carrying out both
quantitative information that takes the form of precise numerical and qualitative
information that assumes qualitative statements of knowledge and experience
represented by natural languages.

SC components consist of several major branches, and many of these techniques
were inspired by the activities of the human brain, the behavior of animals, and
laws of nature. In this paper, some of the most important SC techniques are given
and these include Fuzzy Sets, Artificial Neural Networks (ANN), Genetic
Algorithm (GA), Ant Colony Optimization (ACO) and Gravitational Search
Algorithm (GSA). These techniques have been proven to be efficient in solving
various complex problems. In depth discussion on each of these techniques is
given in the next section. The rest of the paper is organized as follows: Section 2
provides discussions on Fuzzy Sets, ANN, GA, ACO, GSA, and their applications.
Section 3 provides a comparison of these techniques on edge detection, and
finally Section 4 concludes the paper and suggests some possible research work
for the future.

3 Advances of Soft Computing methods in Edge Detection

2 Soft Computing Methods

In this section, five major SC components are discussed. These include Fuzzy Sets,
Artificial Neural Networks, Genetic Algorithm, Ant Colony Optimization, and
Gravitational Search Algorithm.

2.1 Genetic Algorithm

Genetic Algorithm (GA) is a search method that is used to find the exact or, in
most cases, the approximate solutions for optimization and search problems.
Basically, GA is a heuristic optimization method, inspired from biological
mechanisms of evolution and natural genetics. Unlike other search methods
[2][3][4], Holland [1] proposed GA, an evolutionary algorithm that does not take
the basic approach of heading downhill from an arbitrary starting point. For better
understanding of GA concept, we need to understand the process of biological
evolution, and this is discussed in the next sub-section.

2.1.1 Biological Evolution

In nature, competition among individuals for resources such as food and space
leads to the domination of strong individuals over the weaker ones. Only the
fittest individuals survive and reproduce. Hence, the genes of the fittest survive.
The process of reproduction creates diversity in the gene pool. Evolution is the
result of two individual chromosomes combining during reproduction. New
combinations of genes are created from previous ones and a new gene pool is
generated. When the genetic material is exchanged between the chromosomes of
the two parents, a “crossover” has happened which might result in the creation of
a fitter individual. Repeated selection (Survival of the fittest) and crossover cause
the continuous evolution and therefore generation of individuals that survive
better in a competitive environment or in a sense, are fitter. Mutation is another
phenomenon in genetic, which causes sporadic and random alterations in genes
and can help to regenerate lost genetic materials [5].

A Simple Genetic Algorithm (SGA) has been proposed by Holland [1]. This
algorithm works with binary strings; the encoded versions of a solution to the
optimization problem. The algorithm produces a secondary generation of strings
using the genetic operators (crossover and mutation) and the cycle is repeated
until a termination condition is reached. The population that undergoes the
process of evolution in each cycle is chosen according to the fitness of
chromosomes. The algorithm of SGA is given below.

Simple Genetic Algorithm:
Simple Genetic Algorithm()
{
initial population;
evaluate population;

Amir Atapour et al. 4

WHILE termination conditions not met do
 select solutions for next population;
 perform crossover and mutation;
 evaluate population;
END WHILE
}

2.2 Advances in Genetic Algorithm

Genetic Algorithm works well for many practical problems. However, in complex
design, simple GA may converge extremely slowly or it may fail, due to
convergence to an unacceptable local optimum. Considerable research efforts
have been made to improve GA. Some of these improvements are mentioned
below.

2.2.1 Multi-Objective Genetic Algorithm

Common goal of problem solving in engineering is to obtain a good performance
and low cost solution, and this constitute to two conflicting objectives. Therefore,
the usage of multi objective optimization arises to solve multi solutions. Schaffer
[14] improves the SGA with a selection mechanism that takes multiple objectives
into consideration. Each generation includes a number of sub-populations that are
selected based on one objective function. Subsequently, the sub-populations are
mixed to obtain one population.

2.2.2 Parallel Genetic Algorithm

Parallel GAs is usually used when the evaluation of the fitness function is
extremely time-consuming. Parallel GAs can be achieved using several different
methods, and one of the most common approaches is to use a simple master-slave
scheme. A simple master-slave uses one processor, which is called as the master.
This master stores the population while the other processors (the slaves) evaluate
the individuals and perform reproduction operators. Cantu-paz [15] provides a
better comprehensive overview of parallel GAs.

2.2.3 Diversity Maintenance

It was mentioned previously that the mutation operator is applied in order to
guarantee the diversity in GAs. However, even with proper use of mutation, in
later generations, the population begins to converge, the individuals become
similar and the population may converge to an unacceptable solution [16]. Having
premature convergence leads to an unacceptable local optimum. Niching methods
[16,17,18,19,20,21,22] maintain the diversity by keeping the population
individuals away from each other (refer to [20] for detail discussion of Niching
methods).

5 Advances of Soft Computing methods in Edge Detection

2.2.4 Applications of Genetic Algorithm

Different types of Genetic Algorithms have been successfully applied in area of
pattern recognition, expert systems, engineering design, mechanical engineering,
electrical engineering, aerospace engineering, civil engineering, robotics, biology,
and medicine. Table 1 provides some of the important categories for various
applications of GA.

Table 1: Applications of Genetic Algorithm
Problem Type Problem Name Authors References

Engineering
Design

Conceptual Design

Goldberg
Bently et al.
Rasheed et al.
Gero and kazakov

[23]
[24]
[25]
[26]

Data Fitting

Markus et al.
Limaiem et al.
Malena et al.
Karr et al.

[27]
[28]
[29]
[30]

Reverse Engineering Jacq and Roux
Yomanay et al.

[31]
[32]

Mechanism Design Kunjur and
Krishnamurty [33]

Robotics

Robot Path Design
Parker et al.
Buckley et al.
Rana and Zalzala

[34]
[35]
[36]

Evolving Sensory
Characteristics of
Artificial Organism

 Menczer and Belew

[37]

Corridor Following
and Object
Avoidance

Jokobi [38]

Patten
Recognition

Finding Optimal
Feature Set Bala et al. [39]

Expert Systems Validating Expert
Systems Roache et al. [40]

Biology

Modeling the
Evolution of Immune
System

Hightower et al. [41]

Gene Sequencing Parsons et al. [42]

Amir Atapour et al. 6

2.3 Ant Colony Optimization

One of the new problem solving approaches that takes inspiration from the social
behavior of insects and other animals is swarm intelligence. Particle Swarm
Optimization (PSO) was first proposed by Kennedy and Eberhart [43] in 1995 and
was taken from the social behavior of groups, where members behave based on
both themselves and the group’s best interest. Ant Colony Optimization (ACO) is
another swarm intelligence technique which was first introduce by Dorigo et al.
[44,45,46]. ACO has attracted the attention of an increasing number of researchers
and many successful applications are now available. The inspiration source of
ACO is the foraging behavior of ants. In the next section, we discuss the basic
concepts of ACO for a better understanding of ants’ behavior.

2.3.1 Biological Inspiration

In the 1940s, Pierre-Paul Grasse [47] first realized that species of termites react to
what he called “Significant Stimuli”. These reactions take place both in the insects
that produced them and for the other insects in the colony. The term “Stigmetry”
[48] was introduce by Grass, describes an indirect communication amongst a self-
organizing system like an insect colony via individuals modifying their local
environment, which means it can only be accessed by the insect visiting the locus
in which the modification happened. Stigmetry can be observed in colonies of
ants. When ants are in search of a food resource, they leave a substance called
pheromone behind as they move. Other ants perceive the presence of the already
deposited pheromone and tend to follow the paths where pheromone
concentration is higher. Deneuboury et al. [49] has investigated the process of
pheromone laying and ant behavior thoroughly.

Goss et al. [50] has done an experiment which is known as “Shortest Bridge”.
This experiment gave two paths between a nest and a food resource. From Fig. 3,
the upper path is shorter in length than the lower path. When the ants first leave
the nest in search of food, approximately half of them follow the upper path, and
the other half the lower path (Fig. 3(a)). Obviously the ants following the upper
path reach the food resource sooner (Fig. 3(b)), and after collecting the food, the
ants set out to return to the nest by following the pheromone trail that they have
laid as they were on their way to the resource. As they are returning, they lay
pheromone on the shorter path again (Fig. 3(c)). Subsequently, any ant leaving
the nest is now more likely to follow the shorter path to the food, due to the higher
pheromone concentration along the path. The ants returning to the nest from the
food resource are also more likely to take the shorter path. Finally, most, if not all,
of the ants will be taking the shorter path, and the convergence to the better
solution will be achieved (Fig. 3(d)).

7 Advances of Soft Computing methods in Edge Detection

Fig. 3. A schematic illustration of the ‘‘Shortest bridge” experiment.

By using simple computational Agents that work cooperatively, and communicate
through artificial pheromone trails, just as the ants do in nature, we can simulate
the ant colony behavior to solve optimization problems [51].

2.3.2 The Original Ant System

Ant system was the first ACO method proposed by Dorigo et al. [52,53]. He used
the well-known benchmark Traveling Salesman Problem as a test-bed for his
algorithm.
In this problem, every ant creates a solution by moving over different cities. At
each iteration, the pheromone values are updated by all the m ants. The
pheromone ߬ between the cities i and j is updated using equation (1) [54].

(]1,

)1(
1

op

ijp
m

k

k
ijij

∈

Δ+−= ∑
=

τττ
 , (1)

Where p is the evaporation rate for the pheromone trail, m is the number of ants

and k
ijτΔ is the quantity of pheromone laid on the path between cities i and j by

ant k:

⎪⎩

⎪
⎨
⎧

=Δ
,otherwhise 0

tour, its in j)edge(i, use k ant ifL
Q

Kk
ijτ (2)

where Q is a constant and ܮ is the length of the tour of ant k.
The heuristic information in this case is called the visibility ߟ and is defined as
the quantity of 1 ݀ൗ , where ݀ is the distance between the cities i and j. As

Amir Atapour et al. 8

opposed to the pheromone trail, this quantity is not modified during the algorithm
when ant k is in city i and has constructed the partial solution S so fair.

2.3.3 Ant Algorithm as a Computational Optimization Technique

The ACO metaheuristic [55] was developed subsequent to the efficiency of Ant
System in solving the Traveling Salesman Problem. ACO metaheuristic is used to
solve the combinatorial problems based on the natural behavior of ants.

ACO algorithm consists of three mail function (Algorithm 2).

a. Autosolutionconstruct () performs the process of constructing a
solution as the following: Artificial ants move through adjacent states
of a problem according to a transition rule, and create solutions
iteratively.

b. PheromkoneUpdate () updates the pheromone trails either after the
complete solutions have been constructed or after each iteration,
depending on the problem. In early stages of the algorithm run, ACO
finds bad and unacceptable solutions as well as the good solution. In
order to leave the bad solution behind, ACO includes pheromone trail
evaporation. By reducing all the pheromone trails after the completion
of each ant construction, the important feature can easily be
implemented.

c. DeamonAction () is an optional step in the algorithm which involves
additional update parameters from a global perspective [51]. An
example could be applying additional pheromone reinforcement to the
best solution generated.

Algorithm 1. The Ant Colony Optimization metaheuristic.

ParameterInitialisation
WHILE termination conditions not met do

ScheduleActivities
AntSolutionsConstruct()
PheromoneUpdate()
DeamonActions() optional

END ScheduleActivities
END WHILE

The ACO algorithm has been used by several researchers, and various practical
interpretations and improvements have been made which gives rise to several
other ant algorithms. A brief list of ACO algorithms is indicated in Table 2.

Table 2: A non-exhaustive list of successful ACO algorithms
Algorithm Author Year References

ANT SYSTEM (AS) Dorigo et al. 1991 [52,53]

9 Advances of Soft Computing methods in Edge Detection

ELITIST AS Dorigo et al. 1992 [53,56]
ANT-Q Gambardella et al. 1995 [57]
ANT COLONY SYSTEM Dorigo et al. 1996 [58,59]
MAX-MIN AS Stutzle and Hoos 1996 [60,61,62]
RANK-BASED AS Bullnheimer et al. 1997 [63]
ANTS Maniezzo 1999 [64]
BWAS Cordonet et al. 2000 [65]
HYPER-CUBE AS Blumet et al. 2001 [66,67]

2.3.4 Applications of Ant Colony Optimization

In recent years, various successful applications of ACO to a wide range of
different discrete optimization problems, most of which are NP-hard problems,
have been achieved. The success is due to the rising interest of the scientific
community in implementing ACO in actual applications. Some of the most
important applications of ACO are depicted in Table 3.

Table 3: Applications of Ant Colony Optimization.
Problem Type Problem Name Authors References

Routing

Traveling Salesman
Dorigo et al.
Dorigo et al.
Stutzle and Hoos

[52,53]
[68]
[62,69]

Vehicle Routing Gambardella e. al.
Reimann et al.

[70]
[71]

Sequential Ordering Gambardella et al. [72]

Assignment

Quadratic Assignment Stutzle and Hoos
Maniezzo

[62]
[64]

Course Timetabling Socha et al. [73,74]
Graph Coloring Costa and Hertz [75]
Project Scheduling Merkle et al. [76]

Total Weighted Tardiness Den Besten et al.
Merkle et al.

[77]
[78]

Scheduling Finding Optimal Feature
Set

Bala et al. [79]

Subset

Open Shop Roache et al. [80]
Set Covering Lessing et al. [81]
I-Cardinality Trees Blum and Blesa [82]
Multiple Knapsack Leguizamon et al. [83]
Maximum Clique Fenet and Solnon [84,85]

Other Constraint Satisfaction Solnon [86]
Classification Rules Parpinelli et al [87]

Amir Atapour et al. 10

 Bayesian Network Martens et al. [88,89]
 Protein Folding Campos et al. [90]
 Protein-Ligand Dockong Korb et al. [91]

2.4 Artificial Neural Networks

In recent years, Artificial Neural Networks (ANNs) or Neural Networks (NNs)
have been widely developed in solving optimization problems. An ANN is an
information processing paradigm that is inspired by the way biological neurons
process information. A typical structure of ANN composes highly interconnected
processing elements, or neurons, that work in union to solve certain problems.
One of the important characteristics of ANN that has attracted the attention of the
scientific community is its ability to learn by example. ANN simulations appear to
be a recent development. However, this field was established before the advent of
computers and has crossed different stages of development. One of the most
important steps was achieved when Cybenk [92] proved that ANN could be used
as universal approximators. Since then, various networks have been utilized for
optimization [93,94] such as Hopefield Neural Networks (HNNs) [95], Self-
Organizing feature Maps [96], and Boltzamann Machines [97]. Since different
ANN structures have been developed for almost all classes of optimization
problems, it is worth reviewing this field. Hence, a basic biological structure of
ANN is given in the next section for better understanding.

2.4.1 Biological Inspiration

Much is still unknown on brain’s leaning behavior in processing and digesting
information, so theories abound. The brain is principally composed of a very large
number (circa100,000,000,000) of neurons [98]. Each neuron is a specialized cell
which can propagate an electrochemical signal. A typical neuron collects signals
from others through a host of fine structures called Dendrites. The neuron sends
out spikes of electrical activity through a long, thin, stand known as Axon, which
splits into thousands of branches. A structure called a Synapse converts the
activity from the Axon in the connected neurons [99]. When a neuron receives
excitatory input that is sufficiently large compared with its inhibitory input, it
sends a spike of electrical activity down its axon. Learning basically occurs by
changing the effectiveness of the synapse so that the influence of one neuron on
another changes. The components of a neuron are indicated in Fig. 4. The
connection between a synapse and the axon can be seen in Fig. 5.

11 Advances of Soft Computing methods in Edge Detection

Fig. 4. The components of a neuron

Fig. 5. The connection between a synapse and the axon

ANN can be created by deducing the essential features of neurons and their
interconnections. Programming language of a computer will simulate these
features. However, due to the incomplete knowledge of neurons and limited
computing power available, the models are gross idealizations of real networks.

2.4.2 Model of a Neuron

A neuron is an information-processing unit that is fundamental to the operation of
ANN (Fig. 6). A neuron includes a set of synapses or connecting links, each of
which is characterized by a weight or, strength. Another important feature of a
neuron is the adder, which sums the input signals, weighted by the respective
synapses of the neuron. The operations can vary depending on the problems.
However, the most basic operation used constitutes a linear combiner [100]. One
of the most noticed features of a neuron is its activation function, which is used
for limiting the amplitude of the output of a neuron.

Amir Atapour et al. 12

Fig. 6. The model of an artificial neuron

The activation denoted by Q(v), defines the output of a neuron in terms of the
induced local field v. Here, the most common activation function is briefly
explained:

a) Threshold Function - the output of a neuron takes on the value 1 if the

included local field of that is nonnegative and 0 otherwise [101] (Fig. 7).

⎩
⎨
⎧ ≥

=
otherwise, 0

0,v if
vQ

1
)((3)

Fig. 7. The Threshold Function

b) Piecewise-Linear Function - the amplification factor inside the linear region
is assumed to be unity. ANN created with piecewise-linear function have
received significant attention over the last few years, and their application
have spread into many fields [102,103,104,105] (Fig 8).

13 Advances of Soft Computing methods in Edge Detection

⎪
⎪
⎩

⎪
⎪
⎨

⎧

≤

>>

≥

=

,2
1-v if 0

,2
1-v2

1 if v

,2
1v if

vQ

1

)((4)

Fig. 8. The Piecewise-Linear Function

c) Sigmoid Function is the most common activation function widely used by the

researches. This function looks like S-shaped graph (Fig. 9). An example of
the sigmoid function is the logistic function as given in equation (5).

)exp(1
1)(

av
vQ

−+
= , (5)

where a is the slope parameter. By varying a, different sigmoid functions of
different slopes are obtained [106]. Many sigmoid functions have been designed
and used to get more efficient results from ANN [107,108].

Amir Atapour et al. 14

Fig. 9. Different sigmoid functions of different slopes

2.3.3 ANN Structure

The term network is used to reflect to any system of artificial neurons, which may
range from a single node to a large collection of nodes. A typical example of feed
forward structure is given in Fig. 10. In this network, the nodes are arranged in a
layered structure in which each signal emanates from an input and passes via two
nodes before reaching an output beyond which it is no longer transformed. In this
section, two of commonly used ANN structures are briefly described:

2.3.3 .1 Feedforward Neural Network

Being the first and the simplest type of ANN devised, Feedforward ANN passes
the information in a forward direction, from the input nodes to the hidden layers,
and to the output nodes. Feedforward ANN has been successfully applied to the
identification of dynamic systems [99, 109,110]. However, they might require a
large number of input neurons and the computation, subsequently, takes a long
time.

2.3.3 .2 Recurrent Neural Network

ANN with the connection between the neurons from a cycle is called Recurrent
Neural Networks (RNN) (Fig. 10).

15 Advances of Soft Computing methods in Edge Detection

Fig. 10. Recurrent Neural Network Model

The cycle formed in NN causes an internal state of the network which allows it to
exhibit dynamic temporal behavior. Due to fact that RNN can behave chaotically,
dynamic systems theory is usually used to analyze them. Feedforward NN
propagates the data linearly from input to output, while RNN propagates data
from stages to earlier stages also. Different architectures are derived from RNNs
for different purposes. Some of the more commonly-used ones include: Elman
Network [111,112], Jordan Network [112], Hopefield Network [113], Echo State
Network [114], Continuous Time RNN [115], and Hierarchical RNN [116].

2.4.4 Learning

One of the most interesting features of ANN that has received noticeable attention
over the past few years is their ability to learn. There are three major learning
paradigms, each corresponding to a particular abstract learning task. These
learning paradigms are described below.

2.4.4.1 Supervised Learning

Supervised Learning requires that the network relates the variables at the input
layer to some desired behavior at the output layer, while being repeatedly
presented the examples to ANN [117]. Once trained, ANN should be capable of
predicting an output, given a previously unseen set of inputs [118].

2.4.4.2 Unsupervised Learning

Unsupervised networks learn on their own with no teachers. One of the most
common examples of supervised learning is the Kohonen Self-Organizing Maps

Amir Atapour et al. 16

(KSOMs) [118]. In KSOMs, if all the output nodes, which may be one or two
dimensional, are interconnected and all input nodes are connected to all the nodes
in the output layer with no hidden layers, then the task is to map the structure of
the input data onto some topological structure at the output layer. This node is
called the winning node and the weights leading to that output node from all the
input nodes are recorded [119]. By increasing the weights of the winning node
and its neighboring nodes, the algorithm ensures that if the same pattern is
presented later, there is an even more chance of the output node having the
highest activation value. Fig. 11 shows an example of a KSOM.

Fig. 11. An example of a KSOM.

2.4.4.3 Reinforcement Learning

In reinforcement learning, data x is usually generated by an agent’s interactions
with the environment. At each point in time the action ݕ௧ ant the observation ݔ୲
are respectively generated by the agent and the environment. An instantaneous
cost ܿ୲ is usually produced according to unknown dynamics. The main purpose is
to choose certain action that minimizes the cost in the long run [120]. The
environment’s dynamics and the long-term cost of every selection of action are
normally estimated. ANN are mostly used in reinforcement learning for tasks
regarding control problems and decision making tasks [99].

2.4.5 Application of ANNs
The range of applications of ANN models is extremely broad; hence, it is
impossible to mention all of them in this paper. The applications of ANNs may
fall within the categories of function approximation, data processing,
classification, blind signal separation, character recognition, image compression,
stack market prediction, medicine, and many more. Table 4 illustrates some of the
important applications using ANN.

17 Advances of Soft Computing methods in Edge Detection

Table 4: Applications of ANNs
Problem Type Problem Name Authors References

Combustion

Monitoring of
combustion emissions Tronci et al. [121]

Prediction of free lime
content for process
optimization

Schmidt and Schmidt [122]

Prediction of gaseous
emissions from a
stocker boiler

Chong et al. [123]

Pattern
Recognition

Classification Aha and Bankert
Murphey and luo

[124]
[125]

Face Detection Rowley et al. [126]
Business Airline Security Control Brody [127]

Environmental
Science

Efficiency of
environmental
numerical models

Krasnopolsky and
Cherallier

[128]

2.5 Fuzzy Sets Theory

The theory of fuzzy sets was first introduced by Zadeh [129], and is a
mathematical tool for dealing with uncertainty. The idea of fuzzy sets came out
when it was realized that it may not be possible to model ill-defined systems with
precise mathematical methods such as probability theory. Although it is only
about four decades since the present concept of fuzzy sets came out, it was
originally proposed by a Polish mathematician, Lukasiewiecz, on multi-valued
logic which has not been used significantly in logical systems because of its
restricted framework. Gaines and Kohout [130] pointed out certain relationships
between probability theory, and fuzzy set theory in formal and practical aspects,
although they are different.

2.5.1. Definition of Fuzzy Sets

Amir Atapour et al. 18

A fuzzy set is a class of objects with a grade of membership. Such a set is
characterized by a membership function which assigns a grade of membership
ranging between zero and one to each object. The notions of inclusion, union,
intersection, complement, relation, convexity, etc., are extended to such sets and
various properties of these notions in the context of fuzzy sets are established.

Let X be a collection of objects or a universe of discourse, then a fuzzy set A in X
is a set of ordered pairs A={x, μA(x)|x∈X} where μA(x) is the membership function
of x in A, and μA(x) may take any real values in the interval [0,1] and μA : X →
[0,1]. When A is a set in the ordinary sense of the term, its membership function
can take only two values 0 and 1, with μA(x) = 1 or 0 accordingly, as x does or
does not belong to A.

2.5.2 Membership Function

A membership function (MF) is a curve that defines how each point in the input
space is mapped to a degree of membership between 0 and 1. The input space is
sometimes referred to as the universe of discourse.

The set of tall people is one of the most commonly-used examples of a fuzzy set,
where input space is all the potential heights (for example from 3 feet to 8 feet)
and the word “tall” corresponds to a curve that defines the degree to which any
person is tall. Fig. 12, which indicates the degree of membership for the set of tall
people, shows curves that pass from not-tall to tall for both classical sets and
fuzzy sets.

Fig. 12. Membership Degree for the set of tall people.

19 Advances of Soft Computing methods in Edge Detection

2.5.3 Classification of Fuzzy Sets

Based on membership functions, fuzzy sets are classified into four categories
[131]:

Normal fuzzy set: If the membership function has at least one element in the
domain whose value is equal to 1, then the set is called normal fuzzy set (Fig.
13(a)).

Subnormal fuzzy set: If the membership values of the membership function are
less than 1, then the set is called subnormal fuzzy set (Fig. 13(b)).

Convex fuzzy set: If the membership function has membership values that are
monotonically increasing, or monotonically decreasing, or they are monotonically
increasing and decreasing, then the set is called convex fuzzy set (Fig. 13(c)).

Nonconvex fuzzy set: If the membership function has membership values which
are not strictly monotonically increasing or monotonically decreasing or both
monotonically increasing and decreasing, then the set is called nonconvex fuzzy
set (Fig. 13(d)).

(a)

(b)

(c)

(d)

Fig. 13. (a) Normal Fuzzy Set, (b) Subnormal Fuzzy Set, (c) Convex Fuzzy Set
and (d) Nonconvex Fuzzy Set.

Amir Atapour et al. 20

2.5.4 Logical Operations
In fuzzy logic, unlike Boolean logic, inputs can be real numbers between 0 and 1.
So in order to apply logical operations such as “AND” or “OR” on fuzzy sets, we
need functions that can preserve the result of the truth table of “AND” or “OR”
operators, and also extend to all real numbers between 0 and 1. To resolve this
statement, Zadeh proposed the min operation for “AND” and the max operation
for “OR”, so that A AND B becomes equivalent to min(A,B) and A OR B becomes
equivalent to max(A,B). Finally, the operation NOT A becomes equivalent to the
operation 1-A. Fig. 14 shows how the truth table and fuzzy operation is
completely unchanged by this substitution.

Fig. 14. Illustrates how two fuzzy sets are applied together by different operations
to create one fuzzy set.

2.5.5 IF-THEN Rules

Rules form the basis of the fuzzy logic to obtain the fuzzy output by using
linguistic variables as it antecedents and consequents. A single fuzzy If-Then rule
is the form of “if x is A then y is B” where the if-part of the rule “x is A” is called
antecedent, while the then-part of the rule “y is B” is called consequent. Note that

21 Advances of Soft Computing methods in Edge Detection

A and B have values between 0 and 1. The input of an if-then rule is the current
value for the input variable and the output is a fuzzy set that will be later
defuzzified by assigning a value to the output.

There are two parts to interpreting an if-then rule: first, fuzzifying the input and
applying necessary operators, and then, applying that result to the consequent
which is known as implication.

2.5.6 Fuzzy Inference Systems

Fuzzy inference systems (FISs) [131], also known as fuzzy rule-based systems,
are the process of formulating the mapping from a given input to an output using
fuzzy logic. This process involves all the steps described before, membership
functions, fuzzy logic operators, and if-then rules.

The two most important types of fuzzy inference are Mamdani’s method [132]
and Sugeno’s method [133]. Mamdani inference method, introduced by Mamdani
and Assilian, is the most commonly-used in various areas. The other well-known
method, Sugeno method or Takagi-Sugeno-Kang method was introduced by
Sugeno. These two types are different in the way outputs are determined.

2.5.6.1 Mamdani’s Fuzzy Interface

Mamdani’s fuzzy inference method is the most commonly-seen fuzzy
methodology. This method was among the first control systems built using fuzzy
set theory. It was proposed in 1975 as an attempt to control a steam engine and
boiler combination by synthesizing a set of linguistic control rules, obtained from
experienced human operators. His effort was based on Zadeh’s paper on fuzzy
algorithms for complex systems and decision processes [134].

In order to compute the output of a given FIS from the inputs, these five steps
should be done:

Fuzzifying Inputs: The first step is determining the degree of membership of each
input using membership functions.

Applying Fuzzy Operators: After inputs have been fuzzified, if the antecedent of
a rule has more than one part, the fuzzy operator is applied to obtain the result.
The result will then be given to the output function. So the input is two or more
membership values from fuzzified inputs and the output is a truth value.

Applying Implication Method: Implication method is the process of determining
the output of each fuzzy rule’s consequent. Before applying the implication
method, we must take care of the rule’s weight which is a number between 0 and
1. Generally this weight is 1 and so it has no effect on the implication process.
The input of implication is a single number given by the antecedent, and the
output is a fuzzy set.

Amir Atapour et al. 22

Aggregating All Outputs: At this stage, all fuzzy sets that represent the outputs of
each rule, are combined into a single fuzzy set. The input is output functions
returned by the implication process of each rule and the output is one fuzzy set for
each output variable. There are different methods to apply the aggregation such as
maximum, probabilistic or, and sum.

Defuzzifying: Although fuzziness helps during the previous steps, the desired
final output is a single number. To do so the output fuzzy set of aggregation
process must be converted into a single number. The most common method is the
centroid calculation.

2.5.5 Applications of Fuzzy Sets

Fuzzy sets have been used in data processing, classification, signal separation,
character recognition, image processing, stock market prediction, medicine, and
many more. Fuzzy logic has been used in applications in control engineering,
including combustion and IC engines. Table 5 depicts some of the important
applications of Fuzzy Sets.

Table 5: Applications of Fuzzy Sets.
Problem Type Problem Name Authors References

Medicine

Fuzzy degree of food
and drug addiction Nieto and Torres [135]

Fuzzy representation of
concomitant casual
mechanisms

Nieto and Torres [135]

Soil Science Fuzzy Soil Geostatics Mcbrayney and Odeh [136]
Image
Processing

Edge Detection Bezdak et al. [137]
Image Construction Nobuhara et al. [138]

2.6 Gravitational Search Algorithm

Rashedi et al. [139] proposed a new heuristic optimization method, namely
Gravitational Search Algorithm (GSA) in 2009. GSA is basically based on the
Newtonian laws of gravity and motion. The main idea of GSA is to consider an
isolated system of masses, where every mass represents a solution to a certain
problem. In the next section, we provide brief description of GSA.

2.6.1 Natural Inspiration

The main source of inspiration for GSA is certain rules in physics. Basically, GSA
is based on the physical law of gravity and the law of motion. The law of gravity
states that every particle attracts all other particles and the gravitational force
between the particles is directly proportional to the product of their masses and

23 Advances of Soft Computing methods in Edge Detection

inversely proportional to the distance between them. In this method, agents are
objects whose performance is dependent on their masses. All the objects attract
each other by the gravity force. Therefore, all objects are pulled towards the
objects with heavier masses, just as it happens in the nature.

2.6.2 How GSA Works

Suppose there is a system with N agents, the position of every agent is a point in
the search space which represents a solution to the problem. The position of the
ith agent is defined as follows:

),...,,...,(1 n
i

d
iii xxxX = Ni ,...,2,1= (6)

Where n is the dimension of the problem, and ݔௗ is the position of the ith agent in
the dth dimension.

At the starting point of the solution the agents are situated randomly. At the
specific time ‘t’ a gravitational force from mass ‘j’ acts on mass ‘i’, and is defined
as follows:

))()((
)(

)()(
)()(txtx

tR
tMtM

tGtF d
i

d
j

ij

ajpid
ij −

+
×

=
ε , (7)

Where,

݉ is the mass of the object i,

݉ is the mass of the object j,

G(t) is the gravitational constant at time t,

ܴ(t) is the Euclidian distance between the two objects i and j, and

ε is a small constant.

The gravitational constant, G, which is initialized randomly, decreases by time to
control the search accuracy.

In other words, G is a function of the initial value (G0) and time (t):

),()(0 tGGtG = (8)

The total force acting on agent i in the dimension d is calculated as follows:

(t)Frand(t)F
ikbest,jj

d
ijj

d
i ∑

≠∈

= (9)

Amir Atapour et al. 24

Where ݊ܽݎ ݀ is a random number in the interval [0,1] and is used to give a
randomized characteristics to the search.

According to the law of motion, the acceleration of the agent i, at time t, in the dth
dimension is directly proportional to the force acting on that agent, and inversely
proportional to the mass of the agent:

)(
)()(

tM
tFta

ii

d
id

i = (10)

Furthermore, the next velocity of an agent is a function of its current velocity
added to its current acceleration. Therefore, the next position and the next velocity
of an agent can be calculated as follows:

)()()1(tatvrandtv d
i

d
ii

d
i +⋅=+ , (11)

)1()()1(++=+ tvtxtx d
i

d
i

d
i , (12)

Where ܸ
ௗ(t) is the velocity of the agent in the dth dimension at time t, and ݊ܽݎ ݀

is a random number in the interval [0,1].

The masses of the agents are calculated using fitness evaluation. The heavier the
mass of an agent, the more efficient is that agent, regarding the solution it
represents. It is notable that as the law of gravity and the law of motion imply, a
heavy mass has a higher attraction power and moves more slowly.

The masses are updated as follows:

)()(
)()()(
tworsttbest
tworsttfittm i

i −
−

= (13)

Where ݂݅ݐ(t) represents the fitness value of the agent i at time t, and the best(t)
and worst(t) in the population respectively indicate the strongest and the weakest
agent according to their fitness route. For a maximization problem best(t) and
worst(t) can be defined as follows:

)(max)(
},..,1{

tfittworst jNj∈
= (14)

)(min)(
},..,1{

tfittbest jNj∈
= (15)

The updated masses, obtained from the equation (13) must be normalized using
the following equation:

∑
=

= N

j
j

i
i

tm

tmtM

1
)(

)()((16)

25 Advances of Soft Computing methods in Edge Detection

At the beginning of the system establishment, every agent is located at a certain
point of the search space which represents a solution to the problem at every unit
of time. The agents are evaluated and their next positions are calculated using the
equations (11) and equation (12). Other parameters of the algorithm like the
gravitational constant and masses are also calculated using equation (8), equation
(13), and equation (16). These equations are updated at every unit of time. The
search can be stopped after a certain amount of time. The general steps of the
gravitational search algorithm are given in Fig. 15.

GSA can be considered as a population-based heuristic algorithm, in which the
two common aspects are exploration and exploitation. The exploration is the
ability to navigate through the whole search space and the exploitation is the
ability to find the optima around a good solution. GSA, like many other
population-based search algorithms provide satisfactory results. However, the
results can be considered much more efficient in terms of speed. The exploration
step can be guaranteed by choosing proper values for the random parameters in
the equations mentioned earlier, and exploitation step is taken care of when the
objects with heavier masses start to move more and more slowly.

Fig. 15. General steps of the gravitational search algorithm

Generate initial

Evaluate the fitness for

Update the G, best and worst of
the population.

Calculate M and a for

Update velocity and position

Meet the end
criterion?

Return best solution

Yes

No

Amir Atapour et al. 26

3 Results and Discussion

In this section, we provide Soft Computing application on edge detection, which
is an important feature in image processing and machine vision.

The image of “Lena” (Fig. 16(a)), which is not corrupted by any type of noise, is
used as sample data. The experiments were done on images of size of 256×256
pixel, and the gray level value of the experiments is ranged [0,255].

By using Fuzzy approach to detect the edge detection, the thresholds for the input
image are automatically determined [140]. The output edge quality is comparable
to those of the conventional gradient methods, which need trial and error
adjustment of the threshold. Thus, the approach can be considered as one of the
most efficient among fuzzy edge detectors. Fig. 16(b) shows the result of using
fuzzy approach.

The edge detection technique by ACO uses a number of ants to move on the
image for constructing a pheromone matrix. Each entry represents the edge
information at each pixel location of the image. The movements of the ants are
guided by the local variation of the image’s intensity values [141]. On the other
hand, the edges can also be enhanced using ACO. Each pixel of the image is
assumed to be connected with its 8 neighborhood pixels. The ants are placed on
the endpoints that are extracted from the already edge-detected image. ACO will
attempt to fix breaks of edges and extend their searching range to find the
promising edges. Fig.16(c) illustrates the detected and enhanced edges of the
images.

ANN can be used as a very prevalent technology instead of classic edge detection
methods. ANN edge detector provides less operation load and has abilities for
reducing the effects of noise [142]. For edge detection, a training set must be
constructed using ANN, and the pixels are taken one by one from the image.
Subsequently, nine pixels from ten thousand input image clusters are represented.
As an output, the pixels are taken when each nine pixel mask moves across the
image [143]. Fig. 16(d) shows the result of ANN edge detector.

Furthermore, by using Genetic Algorithm (GA) approach for edge detection, the
chromosomes in the population are represented as binary arrays. An edge pixel is
represented as 1 and 0 represents a non-edge pixel. Unlike traditional GA’s, the
mutation in the approach is intelligent; the mutation strategies are selected and
performed based on the examination of the local neighborhood in a 3×3 window,
centered at a random location. Certain heuristic guidelines are followed in order to
determine the probability distribution of the possible mutation [144]. Fig. 16(e)
depicts the resulting edge image using GA

Recently, in 2009, Gravitational Search Algorithm (GSA) has been proposed.
Therefore, not a lot of research has been done on the fields like edge detection
using this method. However, prior to the introduction of GSA by Rashedi et al.

27 Advances of Soft Computing methods in Edge Detection

[139], some studies were done based on the theory of universal gravity [145]. The
edge detection approach used here is also based upon the idea of universal gravity
which is extremely similar to the GSA, with a slight difference in the way the
distance of the agents is used in the equation (7). To construct an edge detector,
every pixel is assumed to be an object, which has some relationship with other
pixels within its neighborhood through gravitational forces. For each pixel, the
magnitude and the direction of the vector of the sum of all the gravitational forces
the pixel exerts on its neighborhood, conveys the vitally important information
about an edge structure. Fig. 16(f) shows the efficiency of GSA edge detection
method.

(a)

(b)

(c)

(d)

(e)

(f)

Fig. 16. The original image, (b) Fuzzy edge detector applied to the image, (c)
ACO-based edge detector applied to the image (d) Neural Network edge detector

applied to the image, (e) GA-based edge detector applied to the image, and (f)
Universal Gravity edge detector applied to the image.

Amir Atapour et al. 28

The methods mentioned above have certain advantages and disadvantages that
separate them from each other in terms of performance. Fig. 17, and Table 6.
Indicate some of the advantages of the edge detection methods. The disadvantages
of the same methods are reviewed in Fig. 18, and Table 7.

Fig. 17. Advantages of the discussed Methods: (a) Universal Gravity edge
detector, (b) Fuzzy edge detector, (c) ACO-based edge detector (d) Neural

Network edge detector, and (e) GA-based edge detector.

 (a)

(b)

(c)

(d)

(e)

29 Advances of Soft Computing methods in Edge Detection

Table 6: Advantages of the discussed methods.
Method Advantages

Gravitational
Search
Algorithm

• Using this method, the edges are selected more smoothly in
the selected features shown in Fig. 17(a). For instance, the
facial features are much closer to the original image.

• The method works acceptably well on noisy images.
Fuzzy Sets
Theory

• Unlike many other edge detectors, the selected features in
Fig. 17(b) are correctly considered as edges.

• This method does not include a lot of parameter setting.
• Fuzzy edge detectors are relatively faster than other

methods.
• Many of the Fuzzy edge detection methods work well on

noisy images.
Ant Colony
Optimization

• Unlike many other edge detectors, the selected features in
Fig. 17(c) are correctly considered as edges.

• The ACO-based method can be used as a great edge-
enhancement method for the already detected edges.

Artificial
Neural
Network

• In this method, the neural networks can be trained using
specific patterns, in order to achieve more accurate edges.

• Using this method, the edges are selected more smoothly in
the selected features shown in Fig. 17(d). For instance, the
facial features are much closer to the original image.

Genetic
Algorithm

• Unlike many other edge detectors, the selected features in
Fig. 17(e) are correctly considered as edges.

Amir Atapour et al. 30

Fig. 18. Disadvantages of the discussed Methods: (a) Universal Gravity edge
detector, (b) Fuzzy edge detector, (c) ACO-based edge detector (d) Neural

Network edge detector, and (e) GA-based edge detector.

(a)

(b)

(c)

(d)

(e)

31 Advances of Soft Computing methods in Edge Detection

Table 7: Disadvantages of the discussed methods.
Method Disadvantages

Gravitational
Search
Algorithm

• Many parameters have to be set correctly, in order to achieve
the best possible edge detector for every image (including
mask, threshold, etc.).

• Unlike many other edge detectors, the selected features
shown in Fig. 18(a) are not considered as edges by mistake.

Fuzzy Sets
Theory

• Unlike many other edge detectors, the selected features
shown in Fig. 18(b) are not considered as edges by mistake.

Ant Colony
Optimization

• Many parameters have to be set correctly, in order to achieve
the best possible edge detector for every image (including
the number of iterations, the number of ants, etc.).

• Unlike many other edge detectors, the selected features
shown in Fig. 18(c) are not considered as edges by mistake.

• This method works relatively slow, in comparison with other
edge detection methods.

Artificial
Neural
Network

• As shown in the selected features in Fig. 18(d), many of the
edges that are usually found by other edge detection methods
are not considered as edges.

Genetic
Algorithm

• Many parameters have to be set correctly, in order to achieve
the best possible edge detector for every image (including
the number of iterations, the number of individuals in the
selected population, etc.).

• Unlike many other edge detectors, the selected features
shown in Fig. 18(e) are not considered as edges by mistake.

• This method works relatively slow, in comparison with other
edge detection methods, and can lead to unacceptable results
depending on the number of iterations.

4 Conclusion & Future Work
In this paper, a brief description of five major Soft Computing techniques is given;
Fuzzy sets, Artificial Neural Networks, Ant Colony Optimization, Genetic
Algorithm, and Gravitational Search Algorithm, and the advances made in their
structure and their applications, especially in the field of edge detection
[140,141,142,143,144,145] were discussed.

All the techniques were compared with each other by applying them on edge
detection, which is of the utmost importance in the field of image processing. The
performances of the techniques were compared by presenting the results of each
technique, when used on the same problem in the same conditions. This paper

Amir Atapour et al. 32

presents a survey on soft computing methods particularly for edge detection. All
of these techniques have relative advantages and disadvantages and there are no
rules as to when a particular technique is more or less suitable for a new
application; hence Free Lunch Theorem should be applied.

Although an incredible amount of research has been done on using soft computing
methods in edge detection, many of the vast and newly-proposed methods still
have a lot of potential for improvement. There are a lot of possible hybrid
methods that the researchers can explore. Neuro-fuzzy, which is a combination of
neural networks and fuzzy sets theory, can be an excellent example of a highly
advantageous method for edge detection. ACO can act as an edge enhancement
method, and is predicted to give astonishing result when applied on edges
detected using a fuzzy method.

There are many other optimization methods that could be possible to integrate
with ANN, in terms of training or as a hybrid method, such as Differential
Evolution [146], Bacteria Foraging [147], Artificial Fish Swarm Algorithm [148],
and others. Future research can hopefully end in new methods with better results.

ACKNOWLEDGEMENTS.

This work is supported by Universiti Teknologi Malaysia, Skudai Johor Bahru
MALAYSIA. Authors would like to thank Soft Computing Research Group
(SCRG) for their moral support and incisive comments to improve this article.

References
[1] J.H. Holland, Adaptation in Natural and Artificial Systems, Univ. of

Michigan Press, Ann Arbor, Mich., (1975).
[2] M. Huanga, C.J. Aine, S. Supek, E. Best, D. Rankena, and E.R. Flynn,

“Multi-start downhill simplex method for spatio-temporal source
localization in magneto encephalography”, Electroencephalography and
clinical Neurophysiology, 108, (1998), pp. 32–44.

[3] R.L. Haupt, and S.E. Haupt, Practical Genetic Algorithm, John Wiley &
Sons, Inc., (2004).

[4] S.N. Sivanandam, and S.N.Deepa, Introduction to Genetic Algorithms,
Springer, (2008).

[5] M. Srinivas, and L.M. Patnaik, “Genetic Algorithm: A Survey”, IEEE
Computer Society, Vol.27, No.6, (1994), pp. 17 – 26.

[6] Ch. Prins, “Two memetic algorithms for heterogeneous fleet vehicle
routing problems”, Engineering Applications of Artificial Intelligence, 22,
(2009), pp. 916–928.

[7] F. Zha, S. Li, J. Sun, and D. Mei, “Genetic algorithm for the one-
commodity pickup-and-delivery traveling salesman problem”, Computers
& Industrial Engineering, 56, (2009), pp. 1642–1648.

33 Advances of Soft Computing methods in Edge Detection

[8] K. Gallacher, and M. Sambridge, “Genetic Algorithm: A Powerful Tool
for Large-Scale Nonlinear Optimization Problems”, Computers &
Industrial Engineering, 56, (2009), pp. 1642–1648.

[9] G. Renner, and A. Ekart, “Genetic algorithms in computer aided design”,
Computer-Aided Design, 35, (2003), pp. 709–726.

[10] X.Hu, and E. Di Paolo, “An efficient genetic algorithm with uniform
crossover for air traffic control”, Computers & Operations Research, 36,
(2009), pp. 245–259.

[11] L.J. Eshelman, R. Caruna, and J.D. Schaffer, “Biases in the crossover
landscape, in: J.D. Schaffer (Ed.)”, Proceedings of the Third International
Conference on Genetic Algorithms, (1989), pp. 10–19.

[12] B. Lazzerini, and F. Marcelloni, “A genetic algorithm for generating
optimal assembly plans”, Artificial Intelligence in Engineering, 14, (2000),
pp. 319–329.

[13] A.T. Haghighat, K. Faez, M. Dehghan, A. Mowlaei, and Y. Ghahremani,
“GA-Based Heuristic Algorithms for QoS Based Multicast Routing”,
Knowledge-Based Systems, 16, (2003), pp. 305–312.

[14] J.D. Schaffer, “Multiple objective optimization with vector evaluated
genetic algorithms”, Genetic Algorithms Appl: Proc First Int Conf Genetic
Algorithms, (1985), pp.93–100.

[15] E. Cantu-Paz “A survey on parallel genetic algorithms”, ILLIGAL report
97003, University of Illinois at Urbana-Champain, (1997).

[16] DE. Goldberg, Genetic algorithms in search optimization, and machine
learning, Addison-Wesley, (1989).

[17] D. Beasley, D.R. Bull, and R.R. Martin, “A sequential niche technique for
multi-modal function optimization”, Evolutionary Computing,Vol.1,
No.2, (1993), pp.101–25.

[18] T. Back, Evolutionary Algorithms in Theory and Practice, Oxford
University Press, (1996).

[19] J. Horn, N. Nafpliotis, and DE. Goldberg, “A niched Pareto genetic
algorithm for multiobjective optimization”, Proc First IEEE Conf
Evolutionary Computing, (1994), pp. 82–7.

[20] S. Mahfoud, “Niching methods for genetic algorithms”, ILLIGAL report
95001, University of Illinois at Urbana-Champaign, (1995).

[21] C.K. Oei, DE. Goldberg, and SJ. Chang, “Tournament selection, niching
and the preservation of diversity”, ILLIGAL report 91011, University of
Illinois at Urbana-Champaign, (1991).

[22] X. Yin, and N.Germay, “A fast genetic algorithm with sharing scheme
using cluster analysis methods in multimodal function optimization”,
Artificial neural nets and genetic algorithms, (1993). pp. 450–457.

[23] DE. Goldberg, “Genetic algorithms as a computational theory of
conceptual design”, Appl Artif Intell Engng, (1991), pp. 3–16.

Amir Atapour et al. 34

[24] P.J. Bentley, and J.P. Wakefield, “Conceptual evolutionary design by a
genetic algorithm”, Engng Des Automation, Vol.3 No.2, (1997), pp. 119–
131.

[25] K. Rasheed, H. Hirsh, and A.Gelsey, “A genetic algorithm for continuous
design space search”, Artif Intell Engng, 11, (1997), pp.295–305.

[26] J. Gero, and V. Kazakov, “Adaptive enlargement of state spaces in
evolutionary designing”, Artif Intell Engng Des, Anal Manufact, 14,
(2000), pp. 31–38.

[27] A. Markus, G. Renner, and J. Vancza, “interpolation with genetic
algorithms”, Shape Modeling Appl, (1997), pp.47–54.

[28] A. Limaiem, A. Nassef, and HA. El-Maraghy, “Data fitting using dual
kriging and genetic algorithms”, Ann CIRP, Vol. 45, No. 1, (1996),
pp.129–134.

[29] M. Manela, N. Thornhill, and JA.Campbell, “Fitting spline functions to
noisy data using a genetic algorithm”, Proc Fifth Int Conf Genetic
Algorithms, (1993), pp.549–553.

[30] CL. Karr, B. Weck, DL. Massart, and P. Vankeerberghen, “Least median
squares curve fitting using a genetic algorithm”, Engng Appl Artif Intell,
Vol. 8 No.2, (1995), pp. 177–189.

[31] JJ. Jacq, and C. Roux, “Registration of 3D images by genetic
optimization”, Pattern Recognition, Vol. 16, No.8, (1995), pp. 823–856.

[32] SM. Yamany, MN. Ahmed, and AA. Farag, “A new genetic-based
technique for matching 3D curves and surfaces”, Pattern Recognition, 32,
(1999), pp. 1817–20.

[33] A. Kunjur, and S. Krishnamurty “Genetic algorithms in mechanism
synthesis”, Fourth Applied Mechanisms and Robotics Conference, (1995).

[34] J.K. Parker, A.R. Khoogar, and DE. Goldberg “Inverse kinematics of
redundant robots using genetic algorithms”, IEEE Int Conf Robotics
Automation, (1989), pp.271–276.

[35] KA. Buckley, SH. Hopkins, and BCH. Turton, “Solution of inverse
kinematics problems of a highly kinematially redundant manipulator using
genetic algorithms”, Genetic Algorithms Engng Syst: Innovations Appl,
(1997), pp.264–9.

[36] AS. Rana, and AMS. Zalzala, “An evolutionary algorithm for collision
free motion planning of multi-arm robots”, Genetic Algorithms Engng
Syst: Innovations Appl, (1995), pp.123–30.

[37] F. Menczer, and R. K. Belew, “Evolving sensors in eiivironments of
controlled complexity”, Proceedings of the Fourth International
Workshop on Synthesis and Simulation of Living systems, (1994), pp.210-
221.

[38] N. Jakobi, “Harnessing morphogenesis”, International Conference on
Information Processing in Cells and Tissues, Liverpool, UK. (1995).

[39] J. Bala, J.Huang, H. Vafaie, K. A. De Jong, and H. Wechsler, “Hybrid
learning using genetic algorithms and decision trees for pattern

35 Advances of Soft Computing methods in Edge Detection

classification”, Proceedings of the 14'h International Joint Conference on
Artificial Intelligence, (1995).

[40] E. A. Roache, K. A. Hickok, K. F. Loje, M. W. Hunt, and J. Grefenstette,
“Genetic algorithms for expert system validation”, Proceedings of Western
Multiconference, (1995).

[41] R.R. Hightower, S. Forrest, and A.S. Parelson, “The evolution of emergent
organization in immune system gene libraries”, In L. J. Eshelman (Ed.)
Proceedings of the Sixth International Conference on Genetic Algorithms,
(1995), pp. 344-350.

[42] R. J. Parsons, S. Forrest, and C. Burks, “Genetic operators for the DNA
fragment-assembly problem”, Machine Learning, 21(1/2), (1995), pp.11-
33.

[43] J. Kennedy, and R. Eberhart, “Particle Swarm Optimization”, IEEE
International Conference on Neural Networks (Perth, Australia), IEEE
Service Center, Piscataway, (1995), pp. 1942-1948.

[44] M. Dorigo, “Optimization, learning and natural algorithms”, Ph.D. Thesis,
Dipartimento di Elettronica, Politecnico di Milano, Italy, (1992).

[45] M. Dorigo, V. Maniezzo, “Ant Colony Positive feedback as a search
strategy”, Tech. Report 91-016, Dipartimento di Elettronica, Politecnico
di Milano, Italy, (1991).

[46] M. Dorigo, V. Maniezzo, and A. Colorni, “Ant system: optimization by a
colony of cooperating agents”, IEEE Trans. Systems, Man, Cybernet, Part
B 26 (1) , (1996), pp. 29–41.

[47] P.-P. Grass´e, Les Insectes Dans Leur Univers, Paris, France: Ed. du Palais
de la d´ecouverte, (1946).

[48] P.-P. Grass´e, “La reconstruction du nid et les coordinations
interindividuelles chez Bellicositermes Natalensis et Cubitermes sp. La
th´eorie de la stigmergie: Essai d’interpr´etation du comportement des
termites constructeurs”, Insectes Sociaux, Vol. 6, (1959), pp. 41–81.

[49] J.L. Deneubourg, S. Aron, S. Goss, and J.M. Pasteels, “The self-
organizing exploratory pattern of the Argentine ant”, Journal of Insect
Behavior, Vol. 3, (1990), pp. 159.

[50] S. Goss, S. Aron, J.L. Deneubourg, and J.M. Pasteels, “Self-organized
shortcuts in the Argentine ant”, Naturwissenschaften, Vol. 76, (1989), pp.
579–581.

[51] R.J. Mullen, D. Monekosso, S. Barman, and P. Remagnino, “A review of
ant algorithms”, Expert Systems with Applications, 36, (2009), pp.9608–
9617.

[52] M. Dorigo, V. Maniezzo, and A. Colorni, “Positive feedback as a search
strategy”, Dipartimento di Elettronica, Politecnico di Milano, Italy, Tech.
Rep. (1991), pp.91-116.

[53] M. Dorigo, V. Maniezzo, and A. Colorni, “Ant System: Optimization by a
colony of cooperating agents”, IEEE Transactions on Systems, Man, and
Cybernetics—Part B, Vol. 26, Nol. 1. (1996), pp. 29–41.

Amir Atapour et al. 36

[54] M. Dorigo, M. Birattari, and T. Stutzle, “Ant Colony Optimization”, IEEE
COMPUTATIONAL INTELLIGENCE MAGAZINE, (2006).

[55] M. Dorigo, G. Di Caro, “The Ant Colony optimization metaheuristic”,
New Ideas in Optimization, (1999), pp. 11–32.

[56] M. Dorigo, “Optimization, learning and natural algorithms (in italian)”,
Ph.D. dissertation, Dipartimento di Elettronica, Politecnico di Milano,
Italy, (1992).

[57] L.M. Gambardella, and M. Dorigo, “Ant-Q: A reinforcement learning
approach to the traveling salesman problem”, in Proc. Twelfth
International Conference on Machine Learning, (1995), pp. 252–260.

[58] M. Dorigo, and L.M. Gambardella, “Ant colonies for the traveling
salesman problem”, BioSystems, Vol. 43, Nol. 2, (1997), pp. 73–81.

[59] L.M. Gambardella and M. Dorigo, “Solving symmetric and asymmetric
TSPs by ant colonies”, in Proc. 1996 IEEE International Conference on
Evolutionary Computation (ICEC’96), (1996), pp. 622–627.

[60] T. Stutzle, and H.H. Hoos, “Improving the Ant System: A detailed report
on the MAX–MIN Ant System”, FG Intellektik, FB Informatik, TU
Darmstadt, Germany, Tech. Rep. AIDA–96–12, (1996).

[61] T. Stutzle, “Local Search Algorithms for Combinatorial Problems:
Analysis, Improvements, and New Applications”, ser. DISKI. Infix, Sankt
Augustin, Germany, Vol. 220, (1999).

[62] T. Stutzle, and H.H. Hoos, “MAX–MIN Ant System”, Future Generation
Computer Systems, Vol. 16, No. 8, (2000), pp. 889–914.

[63] B. Bullnheimer, R.F. Hartl, and C. Strauss, “A new rank based version of
the Ant System-a computational study”, Institute of Management Science,
University of Vienna, Tech. Rep., (1997).

[64] V. Maniezzo, “Exact and approximate nondeterministic tree-search
procedures for the quadratic assignment problem”, INFORMS Journal on
Computing, Vol. 11, No. 4, (1999), pp. 358–369.

[65] O. Cordon, I.F. de Viana, F. Herrera, and L. Moreno, “A new ACO model
integrating evolutionary computation concepts: The best-worst Ant
System”, in Proc. ANTS 2000, M. Dorigo et al., Eds., IRIDIA, Universit´e
Libre de Bruxelles, Belgium, (2000), pp. 22–29.

[66] C. Blum, A. Roli, and M. Dorigo, “HC–ACO: The hyper-cube framework
for Ant Colony Optimization”, Proc. MIC’2001—Metaheuristics
International Conference, Vol. 2, Porto, Portugal, (2001), pp. 399–403.

[67] C. Blum, and M. Dorigo, “The hyper-cube framework for ant colony
optimization”, IEEE Transactions on Systems, Man, and Cybernetics—
Part B, Vol. 34, No. 2, (2004), pp. 1161–1172.

[68] M. Dorigo, and L.M. Gambardella, “Ant Colony System: A cooperative
learning approach to the traveling sales man problem”, IEEE Transactions
on Evolutionary Computation, Vol. 1, No. 1, (1997), pp. 53–66.

37 Advances of Soft Computing methods in Edge Detection

[69] T. Stutzle, and H.H. Hoos, “The MAX–MIN Ant System and local search
for the traveling salesman problem”, Proc. IEEE International Conference
on Evolutionary Computation (ICEC’97), (1997), pp. 309–314.

[70] L.M. Gambardella, E.D. Taillard, and G. Agazzi, “MACS-VRPTW: A
multiple ant colony system for vehicle routing problems with time
windows”, New Ideas in Optimization, (1999), pp. 63–76.

[71] M. Reimann, K. Doerner, and R.F. Hartl, “D-ants: Savings based ants
divide and conquer the vehicle routing problem”, Computers &
Operations Research, Vol. 31, No. 4, (2004), pp. 563-591.

[72] L.M. Gambardella, and M. Dorigo, “Ant Colony System hybridized with a
new local search for the sequential ordering problem”, INFORMS Journal
on Computing, Vol. 12, No. 3, (2000), pp. 237-255.

[73] K. Socha, J. Knowles, and M. Sampels, “A MAX–MIN ant system for the
university timetabling problem”, Proc. ANTS, LNCS, Springer Verlag,
Vol. 2463, (2002).

[74] K. Socha, M. Sampels, and M. Manfrin, “Ant algorithms for the university
course timetabling problem with regard to the state-of-the-art”,
Applications of Evolutionary Computing, Proc. EvoWorkshops, LNCS,
Springer Verlag, Vol. 2611, (2003), pp. 334-345.

[75] D. Costa, and A. Hertz, “Ants can colour graphs”, Journal of the
Operational Research Society, Vol. 48, (1997), pp. 295–305.

[76] D. Merkle, M. Middendorf, and H. Schmeck, “Ant colony optimization for
resourceconstrained project scheduling”, IEEE Transactions on
Evolutionary Computation, Vol. 6, Nol. 4, (2002), pp. 333–346.

[77] M.L. den Besten, T. Stutzle, and M. Dorigo, “Ant colony optimization for
the total weighted tardiness problem”, Proc. PPSN-VI, LNCS, Springer
Verlag, Vol. 1917, (2000), pp. 611–620.

[78] D. Merkle, and M. Middendorf, “Ant colony optimization with global
pheromone evaluation for scheduling a single machine”, Applied
Intelligence, Vol. 18, No. 1, (2003), pp. 105–111.

[79] C. Blum, “Beam-ACO—Hybridizing ant colony optimization with beam
search: An application to open shop scheduling”, Computers & Operations
Research, Vol. 32, No. 6, (2005), pp. 1565–1591.

[80] L. Lessing, I. Dumitrescu, and T. Stutzle, “A comparison between ACO
algorithms for the set covering problem”, Proc. ANTS’2004, LNCS,
Springer Verlag, Vol. 3172, (2004), pp. 1-12.

[81] C. Blum, and M.J. Blesa, “New metaheuristic approaches for the edge-
weighted k-cardinality tree problem”, Computers and Operations
Research, Vol. 32, No. 6, (2005), pp. 1355–1377.

[82] G. Leguizamon, and Z. Michalewicz, “A new version of Ant System for
subset problems”, Proc. CEC’99, IEEE Press, Piscataway, NJ, (1999), pp.
1459–1464.

Amir Atapour et al. 38

[83] S. Fenet, and C. Solnon, “Searching for maximum cliques with ant colony
optimization”, Applications of Evolutionary Computing, Proc.
EvoWorkshops, LNCS, Springer Verlag, Vol. 2611, (2003), pp. 236–245.

[84] C. Solnon, “Solving permutation constraint satisfaction problems with
artificial ants”, Proc. ECAI’2000, Amsterdam, The Netherlands: IOS
Press, (2000), pp. 118–122.

[85] C. Solnon, “Ants can solve constraint satisfaction problems”, IEEE
Transactions on Evolutionary Computation, Vol. 6, No. 4, (2002), pp.
347–357.

[86] R.S. Parpinelli, H.S. Lopes, and A.A. Freitas, “Data mining with an ant
colony optimization algorithm”, IEEE Transactions on Evolutionary
Computation, Vol. 6, No. 4, 2002, pp. 321–332.

[87] D. Martens, M.D. Backer, R. Haesen, B. Baesens, C. Mues, and J.
Vanthienen, “Antbased approach to the knowledge fusion problem”, Proc.
ANTS 2006, LNCS, Springer Verlag, Vol. 4150, (2006), pp. 84–95.

[88] L.M. de Campos, J.M. Fernandez-Luna, J.A. Gamez, and J.M. Puerta,
“Ant colony optimization for learning Bayesian networks”, International
Journal of Approximate Reasoning, Vol. 31, Nol. 3, (2002), pp. 291–311.

[89] L.M. de Campos, J.A. Gamez, and J.M. Puerta, “Learning Bayesian
networks by ant colony optimization: Searching in the space of orderings”,
Mathware and Soft Computing, Vol. 9, No. 2–3, (2002), pp. 251–268.

[90] Shmygelska and H.H. Hoos, “An ant colony optimization algorithm for
the 2D and 3D hydrophobic polar protein folding problem”, BMC
Bioinformatics, Vol. 6, No. 30, (2005).

[91] O. Korb, T. Stutzle, and T.E. Exner, “Application of ant colony
optimization to structure-based drug design”, Proc. ANTS, LNCS, Springer
Verlag, Vol. 4150, (2006), pp. 247–258.

[92] G. Cybenko, “Approximation by superposition of a Sigmoidal function”,
Mathematics of Control, Signals and Systems, Vol. 2, (1989), pp. 492–
499.

[93] C.K. Looi, “Neural network methods in combinatorial optimization.”
Computers and Operations Research, 19 (3/4), (1992), pp. 191–208.

[94] S. Kumar, Neural Networks: A Classroom Approach. International
Edition, McGraw-Hill, Singapore, (2005).

[95] J.J. Hopfield, “Neural networks and physical systems with emergent
collective computational abilities”, Proceedings of the National Academy
of Sciences 79, (1982), pp.2554–2558.

[96] T. Kohonen, “Self-organized formation of topologically correct feature
maps”, Biological Cybernetics 43, (1982). pp.59–69.

[97] D.H. Ackley, G.E. Hinton, T.J. Sejnowski, “A learning algorithm for
Boltzmann Machines”, Cognitive Science, 9, (1985), pp.147–169.

[98] K. Gurney, An introduction to neural networks, Taylor & Francis e-
Library, (2005).

39 Advances of Soft Computing methods in Edge Detection

[99] M. A.Arbib, The Handbool of Brain Theory and Neural Network, MIT
Press, (2003).

[100] S. Heykin, Neural Network: A Comprehensive Foundation, Printice Hall,
(1999).

[101] H. Qu, Z. Yi, and X. Wang, “Switching analysis of 2-D neural networks
with nonsaturating linear threshold transfer function”, Neurocomputing 72,
(2008), pp. 413–419.

[102] R. Batruni, “A multilayer neural network with piecewise-linear structure
and back-propagation learning”, IEEE Trans. Neural Networks, 2, (1991),
pp. 395–403.

[103] J.N. Lin, R. Unbehauen, “Adaptive nonlinear digital filter with canonical
piecewise-linear structure”, IEEE Trans. Circuits Syst. 37, (1990), pp.
347–353.

[104] X. Liu, T. Adali, and L. Demirekler, “A piecewise linear recurrent neural
network structure and its dynamics”, Proceedings of the IEEE
International Conference on Acoustics, Speech, Signal Processing
(ICASSP), Seattle, (1998).

[105] C. Wen, and X. Ma, “A max-piecewise-linear neural network for function
approximation”, Neurocomputing, 71, (2008), pp. 843–852.

[106] A. Menon, K. Mehrotra, C.K MOhan, and S. Ranka, "Charactrization of
Class of Sigmoid Function With Applications to Neural Networks”,
Neural Networks, ELsevier, Vol.9, No.5, (1996), pp. 819-835.

[107] S. Grossberg, “Nonlinear neural networks, principles, mechanism and
architectures”, Neural Networks, 1, (1988), pp.17-61.

[108] A. Miani, and R. Williams, “On the derivatives of the sigmoid”, Neural
Networks, 6(6) (1993), pp. 845-853.

[109] D.T. Pham, and X. Liu “Neural networks for identification, prediction and
control”, London: Springer-Verlag, (1995).

[110] L. Yun, and A. Haubler, “Artificial evolution of neural networks and its
application to feedback control”, Artificial Intelligence in Engineering,
10(2), (1996), pp. 143–152.

[111] X. Tong, Z. Wang, and H. Yu, “A research using hybrid RBF/Elman
neural networks for intrusion detection system secure model”, Computer
Physics Communications, (2009), In Press.

[112] D.T. Pham, and D. Karaboga, “Training Elman and Jordan networks for
system identification using genetic algorithms”, Artificial Intelligence in
Engineering , 13 (1999) , pp.107–117.

[113] N. Kurita, and K. Funahashi, "On the Hopefield Neural Networks and
Mean Field Theory", Neural Network , Vol. 9, No. 9, (1996), pp.1531-
1540.

[114] X. Lin, Z. Yang, and Y. Song, “Short-term stock price prediction based on
echo state networks”, Expert Systems with Applications, 36, (2009), pp.
7313–7317.

Amir Atapour et al. 40

[115] E.D. Sontag, “Alearning result for continuous-time recurrent neural
networks”, Systems & Control Letters, 34, (1998), pp. 151-158.

[116] K.A. Nagaty, “On learning to estimate the block directional image of a
fingerprint using a hierarchical neural network”, Neural Networks, 16,
(2003), pp. 133–144.

[117] K.Chen, L.Yang, X.Yu, and H.Chi, “A self-generating modular neural
network architecture for supervised learning”, Neurocomputing, 16,
(1997), pp. 33-48.

[118] T. Kohonen, Self-Organizing Maps, Springer, 2001.
[119] V. Likhovidov, “Variational Approach to Unsupervised Learning

Algorithms of Neural Networks”, Neural Networks, Vol. 10, No. 2,
(1997), pp. 273-289.

[120] U. Halici, “Reinforcement learning with internal expectation for the
random neural network”, European Journal of Operational Research, 126
(2000), pp. 288-307.

[121] S. Tronci, R. Baratti, and A. Servida, “Monitoring pollutant emissions in a
4.8 MW power plant through neural network”, Neurocomputing, 43,
(2002), pp. 3–15.

[122] D. Schmidt, “Online prediction of the free lime content in the sintering
zone and the use of neural networks for process optimization”, ZKG Int ,
54(9), (2001), pp. 471–9.

[123] AZS. Chong, SJ. Wilcox, and J.Ward, “Prediction of gaseous emissions
from a chain grate stoker boiler using neural networks of ARX structure”,
IEE Proc Sci Measure Technol, 148(3), (2001), pp. 95–102.

[124] D. Aha, and R. Bankert, “Cloud classification using error-correcting
output codes”, Artif. Intell. Appl. Nat. Resour. Agric. Environ. Sci., 11 (1),
(1997), pp. 13–28.

[125] Y.L. Murphey, Y. Luo, “Feature extraction for a multiple pattern
classification neural network system”, IEEE International Conference on
Pattern Recognition, Vol.2, (2002), pp. 220 - 223.

[126] H.A. Rowley, S. Baluja, T. Kanade, ”Neural network-based face detection.
IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol.20,
No.1, (1996), pp.23-38.

[127] H. Brody, “The Neural Computer”, Technology Review, (1990), pp. 43-49.
[128] V.M. Krasnopolsky, and F. Chevallier, “Some neural network applications

in environmental sciences. Part II: advancing computational efficiency of
environmental numerical models, Neural Networks, 16, (2003), pp. 335-
348.

[129] L. A. Zadeh, “Fuzzy Sets”, Information and Control, (1965), pp. 338-353.

[130] B. R. Gaines, and L. J. Kohout, “The fuzzy decade: A bibliography of
fuzzy systems and closely related topics”, Int. J. Man-Machine Studies, 9,
(1977), pp.1-68.

41 Advances of Soft Computing methods in Edge Detection

[131] S. N. Sivanandam, S. Sumathi and S. N. Deepa, Introduction to Fuzzy
Logic using MATLAB, Springer, (2007).

[132] EH. Mamdani, S. Assilian, “An experiment in linguistic synthesis with a
fuzzy logic controller”, Int J Man Mach Stud, 7(1), (1975), pp.1–13.

[133] M. Sugeno, Industrial applications of fuzzy control, Elsevier Science, Pub.
Co., (1985).

[134] L.A. Zadeh, “Outline of a new approach to the analysis of complex
systems and decision processes”, IEEE Transactions on Systems, Man,
and Cybernetics, Vol. 3, No. 1, (1973), pp. 28-44.

[135] J. Nieto, and A. Torres, "Midpoints for fuzzy set and their applicaion in
medicine", Artificial Intelligence in Medicine, 27, (2003), pp. 81-101.

[136] A. McBratney, I. Odeh, "Application of fuzzy sets in soil science: fuzzy
logic, fuzzy measurements and fuzzy decisions", Geoderma, 77, (1997),
pp. 85-113.

[137] J.C. Bezdek, R. Chandrasekhar, and Y. Attikiouzel, “A Geometric
Approach to Edge Detection”, IEEE Transactions on Fuzzy Systems,
Vol.6, No. 1, (1998), pp. 52-75.

[138] H. Nobuhara, B. Bede, K. Hirota, "On various eigen fuzzy sets and their
application to image reconstruction", Information Sciences, 176, (2006),
pp. 2988–3010.

[139] E. Rashedi, H. Nezamabadi-pour, S. Saryazdi, “GSA: A Gravitational
Search Algorithm”, Information Sciences, Vol. 179, No. 13, (2009), pp.
2232-2248.

[140] K. Dong-Su, L. Wang-Heon, and K. In-So, “Automatic edge detection
using 3×3 ideal binary pixel patterns and fuzzy-based edge thresholding”,
Pattern Recognition Letters, 25, (2004), pp. 101–106.

[141] L. De-Sian, and C. Chien-Chang, “Edge detection improvement by ant
colony optimization”, Pattern Recognition Letters, 29, (2008), pp. 416–
425.

[142] A.J. Pinho, and L.B. Almeida, “Edge detection filters based on artificial
neural networks”, Pro. of ICIAP'95, IEEE Computer Society Press,
(1995), pp.159-164.

[143] A. Basturk, and E. Gunay, “Efficient edge detection in digital images
using a cellular neural network optimized by differential evolution
algorithm”, Expert Systems with Applications, 36, (2009), pp. 2645–2650.

[144] S.M. Bhandarkar, Y. Zhang, and W.D. Potter, "An Edge Detection
Technique Using Genetic Algorithm-Based Optimization", Pattern
Recognition, Vol. 27, No. 9, pp. 1159-1180.

[145] G. Sun, Q.h. Liu, Q. Liu, C. Ji, X. Li, “A novel approach for edge
detection based on the theory of universal gravity”, Pattern Recognition,
40, (2007) , pp. 2766 – 2775.

Amir Atapour et al. 42

[146] A. Basturk, and E. Gunay, “Efficient edge detection in digital images
using a cellular neural network optimized by differential evolution
algorithm”, Expert Systems with Applications, 36, (2009), pp. 2645–2650.

[147] M. Maitra, and A. Chatterjee, “A novel technique for multilevel optimal
magnetic resonance brain image thresholding using bacterial foraging”,
Measurement, 41, (2008), pp. 1124–1134.

[148] P.Yin, “A discrete particle swarm algorithm for optimal polygonal
approximation of digital curves”, J. Vis. Commun. Image R. 15, (2004), pp.
241–260.

