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Abstract 

     Artificial Intelligence (AI) techniques are now commonly used to 
solve complex and ill-defined problems. AI a broad field and will 
bring different meanings for different people. John McCarthy would 
probably use AI as “computational intelligence”, while Zadeh 
claimed that computational intelligence is actually Soft Computing 
(SC) techniques. Regardless of its definition, AI concerns with tasks 
that require human intelligence which require complex and 
advanced reasoning processes and knowledge. Due to its ability to 
learn, handle incomplete or incomprehensible data, deal with non-
linear problems, and perform reasonable tasks very fast, AI has been 
used in diverse applications in control, robotics, pattern recognition, 
forecasting, medicine, power systems, manufacturing, optimization, 
signal processing, and social sciences. However, in this paper, we 
will focus on Soft Computing (SC), one of the AI influences that 
sprang from the concept of cybernetics. The main objective of this 
paper is to illustrate how some of these SC techniques generally 
work on detecting the edges. The paper also outlines practical 
differences among these techniques when they are applied to solving 
the problem of edge detection. 

 

Keywords: Artificial Intelligence, Soft Computing, Ant Colony Optimization, 
Gravitational Search Algorithm, Edge Detection.  
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1      Introduction 

The term Artificial Intelligence (AI) refers to the intelligence of machines. 
Conventional AI research focuses on an attempt to mimic human intelligent 
behavior by expressing it in language forms or symbolic rules. Conventional AI 
basically manipulates symbols on the assumption that such behavior can be stored 
in symbolically structured knowledge bases. Perhaps the most successful 
conventional AI product is the knowledge-based system or expert system (ES). 
Through many years of research, a large number of techniques have been 
developed in the field of AI to solve the most difficult problems in computer 
science. However, it should be noted that merely solving a problem does not 
indicate complete understanding of a situation. Understanding is one the main 
requirements for intelligence. Therefore an AI technique, by which even difficult 
problems are solved, still doesn’t provide actual intelligence. On the other hand, 
modern AI inevitably depends on personal judgment, and it is true that many 
books on modern AI describe neural networks and perhaps other soft computing 
components.  

Soft Computing can be considered as a field dedicated to problem solving 
methods capable of simultaneously exploiting numerical data and human 
knowledge, using mathematical modeling and symbolic reasoning systems. It is 
tolerant of imprecision, uncertainty, and partial truth. The SOUL of SC is to make 
computers as SOFT as the human brain, and is capable of carrying out both 
quantitative information that takes the form of precise numerical and qualitative 
information that assumes qualitative statements of knowledge and experience 
represented by natural languages.  

SC components consist of several major branches, and many of these techniques 
were inspired by the activities of the human brain, the behavior of animals, and 
laws of nature. In this paper, some of the most important SC techniques are given 
and these include Fuzzy Sets, Artificial Neural Networks (ANN), Genetic 
Algorithm (GA), Ant Colony Optimization (ACO) and Gravitational Search 
Algorithm (GSA). These techniques have been proven to be efficient in solving 
various complex problems. In depth discussion on each of these techniques is 
given in the next section. The rest of the paper is organized as follows: Section 2 
provides discussions on Fuzzy Sets, ANN, GA, ACO, GSA, and their applications. 
Section 3 provides a comparison of these techniques on edge detection, and 
finally Section 4 concludes the paper and suggests some possible research work 
for the future. 
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2      Soft Computing Methods 

In this section, five major SC components are discussed. These include Fuzzy Sets, 
Artificial Neural Networks, Genetic Algorithm, Ant Colony Optimization, and 
Gravitational Search Algorithm. 

2.1      Genetic Algorithm  

Genetic Algorithm (GA) is a search method that is used to find the exact or, in 
most cases, the approximate solutions for optimization and search problems. 
Basically, GA is a heuristic optimization method, inspired from biological 
mechanisms of evolution and natural genetics. Unlike other search methods 
[2][3][4], Holland [1] proposed GA, an evolutionary algorithm that does not take 
the basic approach of heading downhill from an arbitrary starting point. For better 
understanding of GA concept, we need to understand the process of biological 
evolution, and this is discussed in the next sub-section. 

2.1.1     Biological Evolution 

In nature, competition among individuals for resources such as food and space 
leads to the domination of strong individuals over the weaker ones. Only the 
fittest individuals survive and reproduce. Hence, the genes of the fittest survive. 
The process of reproduction creates diversity in the gene pool. Evolution is the 
result of two individual chromosomes combining during reproduction. New 
combinations of genes are created from previous ones and a new gene pool is 
generated. When the genetic material is exchanged between the chromosomes of 
the two parents, a “crossover” has happened which might result in the creation of 
a fitter individual. Repeated selection (Survival of the fittest) and crossover cause 
the continuous evolution and therefore generation of individuals that survive 
better in a competitive environment or in a sense, are fitter. Mutation is another 
phenomenon in genetic, which causes sporadic and random alterations in genes 
and can help to regenerate lost genetic materials [5]. 

A Simple Genetic Algorithm (SGA) has been proposed by Holland [1]. This 
algorithm works with binary strings; the encoded versions of a solution to the 
optimization problem. The algorithm produces a secondary generation of strings 
using the genetic operators (crossover and mutation) and the cycle is repeated 
until a termination condition is reached. The population that undergoes the 
process of evolution in each cycle is chosen according to the fitness of 
chromosomes. The algorithm of SGA is given below. 

Simple Genetic Algorithm: 
Simple Genetic Algorithm() 
{ 
initial population; 
evaluate population; 
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WHILE termination conditions not met do 
   select solutions for next population; 
   perform crossover and mutation; 
   evaluate population; 
END WHILE 
} 

2.2     Advances in Genetic Algorithm 

Genetic Algorithm works well for many practical problems. However, in complex 
design, simple GA may converge extremely slowly or it may fail, due to 
convergence to an unacceptable local optimum. Considerable research efforts 
have been made to improve GA. Some of these improvements are mentioned 
below. 

2.2.1     Multi-Objective Genetic Algorithm 

Common goal of problem solving in engineering is to obtain a good performance 
and low cost solution, and this constitute to two conflicting objectives. Therefore, 
the usage of multi objective optimization arises to solve multi solutions. Schaffer 
[14] improves the SGA with a selection mechanism that takes multiple objectives 
into consideration. Each generation includes a number of sub-populations that are 
selected based on one objective function. Subsequently, the sub-populations are 
mixed to obtain one population. 

2.2.2     Parallel Genetic Algorithm 

Parallel GAs is usually used when the evaluation of the fitness function is 
extremely time-consuming. Parallel GAs can be achieved using several different 
methods, and one of the most common approaches is to use a simple master-slave 
scheme. A simple master-slave uses one processor, which is called as the master. 
This master stores the population while the other processors (the slaves) evaluate 
the individuals and perform reproduction operators. Cantu-paz [15] provides a 
better comprehensive overview of parallel GAs. 

2.2.3     Diversity Maintenance 

It was mentioned previously that the mutation operator is applied in order to 
guarantee the diversity in GAs. However, even with proper use of mutation, in 
later generations, the population begins to converge, the individuals become 
similar and the population may converge to an unacceptable solution [16]. Having 
premature convergence leads to an unacceptable local optimum. Niching methods 
[16,17,18,19,20,21,22] maintain the diversity by keeping the  population 
individuals away from each other (refer to [20] for detail discussion of Niching 
methods). 
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2.2.4     Applications of Genetic Algorithm 

Different types of Genetic Algorithms have been successfully applied in area of 
pattern recognition, expert systems, engineering design, mechanical engineering, 
electrical engineering, aerospace engineering, civil engineering, robotics, biology, 
and medicine. Table 1 provides some of the important categories for various 
applications of GA. 

 

 

 

Table 1: Applications of Genetic Algorithm 
Problem Type Problem Name Authors References

Engineering 
Design 
 

Conceptual Design 

Goldberg 
Bently et al. 
Rasheed et al. 
Gero and kazakov 

[23] 
[24] 
[25] 
[26] 

Data Fitting 

Markus et al. 
Limaiem et al. 
Malena et al. 
Karr et al. 

[27] 
[28] 
[29] 
[30] 

Reverse Engineering Jacq and Roux 
Yomanay et al. 

[31] 
[32] 

Mechanism Design Kunjur and 
Krishnamurty [33] 

Robotics 
 

Robot Path Design 
Parker et al. 
Buckley et al. 
Rana and Zalzala 

[34] 
[35] 
[36] 

Evolving Sensory 
Characteristics of 
Artificial Organism 

 Menczer and Belew  
 

[37] 
 

Corridor Following 
and Object 
Avoidance 

Jokobi [38] 

Patten 
Recognition 

Finding Optimal 
Feature Set Bala et al. [39] 

Expert Systems Validating Expert 
Systems Roache et al. [40] 

Biology 

Modeling the 
Evolution of Immune 
System 

Hightower et al. [41] 

Gene Sequencing Parsons et al. [42] 
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2.3      Ant Colony Optimization 

One of the new problem solving approaches that takes inspiration from the social 
behavior of insects and other animals is swarm intelligence. Particle Swarm 
Optimization (PSO) was first proposed by Kennedy and Eberhart [43] in 1995 and 
was taken from the social behavior of groups, where members behave based on 
both themselves and the group’s best interest. Ant Colony Optimization (ACO) is 
another swarm intelligence technique which was first introduce by Dorigo et al. 
[44,45,46]. ACO has attracted the attention of an increasing number of researchers 
and many successful applications are now available. The inspiration source of 
ACO is the foraging behavior of ants. In the next section, we discuss the basic 
concepts of ACO for a better understanding of ants’ behavior. 

2.3.1     Biological Inspiration 

In the 1940s, Pierre-Paul Grasse [47] first realized that species of termites react to 
what he called “Significant Stimuli”. These reactions take place both in the insects 
that produced them and for the other insects in the colony. The term “Stigmetry” 
[48] was introduce by Grass, describes an indirect communication amongst a self-
organizing system like an insect colony via individuals modifying their local 
environment, which means it can only be accessed by the insect visiting the locus 
in which the modification happened. Stigmetry can be observed in colonies of 
ants. When ants are in search of a food resource, they leave a substance called 
pheromone behind as they move. Other ants perceive the presence of the already 
deposited pheromone and tend to follow the paths where pheromone 
concentration is higher. Deneuboury et al. [49] has investigated the process of 
pheromone laying and ant behavior thoroughly. 

Goss et al. [50] has done an experiment which is known as “Shortest Bridge”.  
This experiment gave two paths between a nest and a food resource. From Fig. 3, 
the upper path is shorter in length than the lower path. When the ants first leave 
the nest in search of food, approximately half of them follow the upper path, and 
the other half the lower path (Fig. 3(a)). Obviously the ants following the upper 
path reach the food resource sooner (Fig. 3(b)), and after collecting the food, the 
ants set out to return to the nest by following the pheromone trail that they have 
laid as they were on their way to the resource. As they are returning, they lay 
pheromone on the shorter path again (Fig. 3(c)).  Subsequently, any ant leaving 
the nest is now more likely to follow the shorter path to the food, due to the higher 
pheromone concentration along the path. The ants returning to the nest from the 
food resource are also more likely to take the shorter path. Finally, most, if not all, 
of the ants will be taking the shorter path, and the convergence to the better 
solution will be achieved (Fig. 3(d)). 
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Fig. 3. A schematic illustration of the ‘‘Shortest bridge” experiment. 

 
By using simple computational Agents that work cooperatively, and communicate 
through artificial pheromone trails, just as the ants do in nature, we can simulate 
the ant colony behavior to solve optimization problems [51].  

2.3.2     The Original Ant System 

Ant system was the first ACO method proposed by Dorigo et al. [52,53]. He used 
the well-known benchmark Traveling Salesman Problem as a test-bed for his 
algorithm. 
In this problem, every ant creates a solution by moving over different cities. At 
each iteration, the pheromone values are updated by all the m ants. The 
pheromone ߬ between the cities i and j is updated using equation (1) [54]. 
 

( ]1,

)1(
1

op

ijp
m

k

k
ijij

∈

Δ+−= ∑
=

τττ
 ,              (1) 
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where Q is a constant and ܮ is the length of the tour of ant k. 
The heuristic information in this case is called the visibility ߟ and is defined as 
the quantity of 1 ݀ൗ , where ݀  is the distance between the cities i and j. As 
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opposed to the pheromone trail, this quantity is not modified during the algorithm 
when ant k is in city i and has constructed the partial solution S so fair. 

2.3.3     Ant Algorithm as a Computational Optimization Technique  

The ACO metaheuristic [55] was developed subsequent to the efficiency of Ant 
System in solving the Traveling Salesman Problem. ACO metaheuristic is used to 
solve the combinatorial problems based on the natural behavior of ants. 

ACO algorithm consists of three mail function (Algorithm 2).  

a. Autosolutionconstruct ( ) performs the process of constructing a 
solution as the following: Artificial ants move through adjacent states 
of a problem according to a transition rule, and create solutions 
iteratively. 

b. PheromkoneUpdate ( ) updates the pheromone trails either after the 
complete solutions have been constructed or after each iteration, 
depending on the problem. In early stages of the algorithm run, ACO 
finds bad and unacceptable solutions as well as the good solution. In 
order to leave the bad solution behind, ACO includes pheromone trail 
evaporation. By reducing all the pheromone trails after the completion 
of each ant construction, the important feature can easily be 
implemented. 

c. DeamonAction ( ) is an optional step in the algorithm which involves 
additional update parameters from a global perspective [51]. An 
example could be applying additional pheromone reinforcement to the 
best solution generated. 

 
Algorithm 1. The Ant Colony Optimization metaheuristic. 
 

ParameterInitialisation 
WHILE termination conditions not met do 

ScheduleActivities 
AntSolutionsConstruct() 
PheromoneUpdate() 
DeamonActions() optional 

END ScheduleActivities 
END WHILE 

The ACO algorithm has been used by several researchers, and various practical 
interpretations and improvements have been made which gives rise to several 
other ant algorithms. A brief list of ACO  algorithms is indicated in Table 2. 

Table 2: A non-exhaustive list of successful ACO algorithms  
Algorithm Author Year References

ANT SYSTEM (AS) Dorigo et al. 1991 [52,53] 
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ELITIST AS Dorigo et al. 1992 [53,56] 
ANT-Q Gambardella et al. 1995 [57] 
ANT COLONY SYSTEM Dorigo et al. 1996 [58,59] 
MAX-MIN AS Stutzle and Hoos 1996 [60,61,62] 
RANK-BASED AS Bullnheimer et al. 1997 [63] 
ANTS Maniezzo 1999 [64] 
BWAS Cordonet et al. 2000 [65] 
HYPER-CUBE AS Blumet et al. 2001 [66,67] 
 

2.3.4     Applications of Ant Colony Optimization 

In recent years, various successful applications of ACO to a wide range of 
different discrete optimization problems, most of which are NP-hard problems, 
have been achieved. The success is due to the rising interest of the scientific 
community in implementing ACO in actual applications. Some of the most 
important applications of ACO are depicted in Table 3. 

 

Table 3: Applications of Ant Colony Optimization. 
Problem Type Problem Name Authors References

Routing 
 

Traveling Salesman 
Dorigo et al. 
Dorigo et al. 
Stutzle and Hoos 

[52,53] 
[68] 
[62,69] 

Vehicle Routing Gambardella e. al. 
Reimann et al. 

[70] 
[71] 

Sequential Ordering Gambardella et al. [72] 

Assignment 
 

Quadratic Assignment Stutzle and Hoos 
Maniezzo 

[62] 
[64] 

Course Timetabling Socha et al. [73,74] 
Graph Coloring  Costa and Hertz  [75] 
Project Scheduling Merkle et al. [76] 

Total Weighted Tardiness Den Besten et al. 
Merkle et al. 

[77] 
[78] 

Scheduling Finding Optimal Feature 
Set 

Bala et al. [79] 

Subset 

Open Shop Roache et al. [80] 
Set Covering Lessing et al. [81] 
I-Cardinality Trees Blum and Blesa [82] 
Multiple Knapsack Leguizamon et al. [83] 
Maximum Clique Fenet and Solnon [84,85] 

Other Constraint Satisfaction Solnon [86] 
Classification Rules Parpinelli et al [87] 
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 Bayesian Network Martens et al. [88,89] 
 Protein Folding Campos et al. [90] 
 Protein-Ligand Dockong Korb et al. [91] 

 

2.4      Artificial Neural Networks 

In recent years, Artificial Neural Networks (ANNs) or Neural Networks (NNs) 
have been widely developed in solving optimization problems. An ANN is an 
information processing paradigm that is inspired by the way biological neurons 
process information. A typical structure of ANN composes highly interconnected 
processing elements, or neurons, that work in union to solve certain problems. 
One of the important characteristics of ANN that has attracted the attention of the 
scientific community is its ability to learn by example. ANN simulations appear to 
be a recent development. However, this field was established before the advent of 
computers and has crossed different stages of development. One of the most 
important steps was achieved when Cybenk [92] proved that ANN could be used 
as universal approximators. Since then, various networks have been utilized for 
optimization [93,94] such as Hopefield Neural Networks (HNNs) [95], Self-
Organizing feature Maps [96], and Boltzamann Machines [97]. Since different 
ANN structures have been developed for almost all classes of optimization 
problems, it is worth reviewing this field. Hence, a basic biological structure of 
ANN is given in the next section for better understanding. 

2.4.1      Biological Inspiration 

Much is still unknown on brain’s leaning behavior in processing and digesting 
information, so theories abound. The brain is principally composed of a very large 
number (circa100,000,000,000) of neurons [98]. Each neuron is a specialized cell 
which can propagate an electrochemical signal. A typical neuron collects signals 
from others through a host of fine structures called Dendrites. The neuron sends 
out spikes of electrical activity through a long, thin, stand known as Axon, which 
splits into thousands of branches. A structure called a Synapse converts the 
activity from the Axon in the connected neurons [99]. When a neuron receives 
excitatory input that is sufficiently large compared with its inhibitory input, it 
sends a spike of electrical activity down its axon. Learning basically occurs by 
changing the effectiveness of the synapse so that the influence of one neuron on 
another changes. The components of a neuron are indicated in Fig. 4. The 
connection between a synapse and the axon can be seen in Fig. 5. 
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Fig. 4. The components of a neuron 

 

 
Fig. 5. The connection between a synapse and the axon 

 

ANN can be created by deducing the essential features of neurons and their 
interconnections. Programming language of a computer will simulate these 
features. However, due to the incomplete knowledge of neurons and limited 
computing power available, the models are gross idealizations of real networks. 

2.4.2      Model of a Neuron 

A neuron is an information-processing unit that is fundamental to the operation of 
ANN (Fig. 6). A neuron includes a set of synapses or connecting links, each of 
which is characterized by a weight or, strength. Another important feature of a 
neuron is the adder, which sums the input signals, weighted by the respective 
synapses of the neuron. The operations can vary depending on the problems. 
However, the most basic operation used constitutes a linear combiner [100]. One 
of the most noticed features of a neuron is its activation function, which is used 
for limiting the amplitude of the output of a neuron. 
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Fig. 6. The model of an artificial neuron 

The activation denoted by Q(v), defines the output of a neuron in terms of the 
induced local field v. Here, the most common activation function is briefly 
explained: 

 
a) Threshold Function - the output of a neuron takes on the value 1 if the 

included local field of that is nonnegative and 0 otherwise [101] (Fig. 7). 
 

⎩
⎨
⎧ ≥

=
otherwise,     0

0,v if   
vQ

1
)(                                                 (3) 

 
Fig. 7. The Threshold Function 

 

b) Piecewise-Linear Function - the amplification factor inside the linear region 
is assumed to be unity. ANN created with piecewise-linear function have 
received significant attention over the last few years, and their application 
have spread into many fields [102,103,104,105 ] (Fig 8). 
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Fig. 8. The Piecewise-Linear Function 

 
 
c) Sigmoid Function is the most common activation function widely used by the 

researches. This function looks like S-shaped graph (Fig. 9). An example of 
the sigmoid function is the logistic function as given in equation (5). 

)exp(1
1)(

av
vQ

−+
=  ,                                                                    (5) 

 

where a is the slope parameter. By varying a, different sigmoid functions of 
different slopes are obtained [106]. Many sigmoid functions have been designed 
and used to get more efficient results from ANN [107,108]. 
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Fig. 9. Different sigmoid functions of different slopes 

 

2.3.3      ANN Structure 

The term network is used to reflect to any system of artificial neurons, which may 
range from a single node to a large collection of nodes. A typical example of feed 
forward structure is given in Fig. 10. In this network, the nodes are arranged in a 
layered structure in which each signal emanates from an input and passes via two 
nodes before reaching an output beyond which it is no longer transformed. In this 
section, two of commonly used ANN structures are briefly described: 

2.3.3 .1     Feedforward Neural Network 

Being the first and the simplest type of ANN devised, Feedforward ANN passes 
the information in a forward direction, from the input nodes to the hidden layers, 
and to the output nodes. Feedforward ANN has been successfully applied to the 
identification of dynamic systems [99, 109,110]. However, they might require a 
large number of input neurons and the computation, subsequently, takes a long 
time.  

2.3.3 .2     Recurrent Neural Network 

ANN with the connection between the neurons from a cycle is called Recurrent 
Neural Networks (RNN) (Fig. 10). 
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Fig. 10. Recurrent Neural Network Model 

 

The cycle formed in NN causes an internal state of the network which allows it to 
exhibit dynamic temporal behavior. Due to fact that RNN can behave chaotically, 
dynamic systems theory is usually used to analyze them. Feedforward NN 
propagates the data linearly from input to output, while RNN propagates data 
from stages to earlier stages also. Different architectures are derived from RNNs 
for different purposes. Some of the more commonly-used ones include: Elman 
Network [111,112], Jordan Network [112], Hopefield Network [113], Echo State 
Network [114], Continuous Time RNN [115], and Hierarchical RNN [116]. 

2.4.4      Learning 

One of the most interesting features of ANN that has received noticeable attention 
over the past few years is their ability to learn. There are three major learning 
paradigms, each corresponding to a particular abstract learning task. These 
learning paradigms are described below. 

2.4.4.1      Supervised Learning 

Supervised Learning requires that the network relates the variables at the input 
layer to some desired behavior at the output layer, while being repeatedly 
presented the examples to ANN [117]. Once trained, ANN should be capable of 
predicting an output, given a previously unseen set of inputs [118].  

2.4.4.2      Unsupervised Learning 

Unsupervised networks learn on their own with no teachers. One of the most 
common examples of supervised learning is the Kohonen Self-Organizing Maps 
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(KSOMs) [118]. In KSOMs, if all the output nodes, which may be one or two 
dimensional, are interconnected and all input nodes are connected to all the nodes 
in the output layer with no hidden layers, then the task is to map the structure of 
the input data onto some topological structure at the output layer. This node is 
called the winning node and the weights leading to that output node from all the 
input nodes are recorded [119]. By increasing the weights of the winning node 
and its neighboring nodes, the algorithm ensures that if the same pattern is 
presented later, there is an even more chance of the output node having the 
highest activation value. Fig. 11 shows an example of a KSOM. 

 

 
Fig. 11. An example of a KSOM. 

 

2.4.4.3      Reinforcement Learning 

In reinforcement learning, data x is usually generated by an agent’s interactions 
with the environment. At each point in time the action ݕ௧ ant the observation ݔ୲ 
are respectively generated by the agent and the environment. An instantaneous 
cost ܿ୲ is usually produced according to unknown dynamics. The main purpose is 
to choose certain action that minimizes the cost in the long run [120]. The 
environment’s dynamics and the long-term cost of every selection of action are 
normally estimated. ANN are mostly used in reinforcement learning for tasks 
regarding control problems and decision making tasks [99]. 
 
2.4.5      Application of ANNs 
The range of applications of ANN models is extremely broad; hence, it is 
impossible to mention all of them in this paper. The applications of ANNs may 
fall within the categories of function approximation, data processing, 
classification, blind signal separation, character recognition, image compression, 
stack market prediction, medicine, and many more. Table 4 illustrates some of the 
important applications using ANN. 
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Table 4: Applications of ANNs 
Problem Type Problem Name Authors References

Combustion 
 

Monitoring of 
combustion emissions Tronci et al. [121] 

Prediction of free lime 
content for process 
optimization 

Schmidt and Schmidt [122] 

Prediction of gaseous 
emissions from a 
stocker boiler 

Chong et al. [123] 

Pattern 
Recognition 
 

Classification Aha and Bankert 
Murphey and luo 

[124] 
[125] 

Face Detection  Rowley et al. [126] 
Business Airline Security Control Brody [127] 

Environmental 
Science 

Efficiency of 
environmental 
numerical models 

Krasnopolsky and 
Cherallier 

[128] 

 

2.5      Fuzzy Sets Theory 

The theory of fuzzy sets was first introduced by Zadeh [129], and is a 
mathematical tool for dealing with uncertainty. The idea of fuzzy sets came out 
when it was realized that it may not be possible to model ill-defined systems with 
precise mathematical methods such as probability theory. Although it is only 
about four decades since the present concept of fuzzy sets came out, it was 
originally proposed by a Polish mathematician, Lukasiewiecz, on multi-valued 
logic which has not been used significantly in logical systems because of its 
restricted framework. Gaines and Kohout [130] pointed out certain relationships 
between probability theory, and fuzzy set theory in formal and practical aspects, 
although they are different. 

2.5.1.       Definition of Fuzzy Sets 
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A fuzzy set is a class of objects with a grade of membership. Such a set is 
characterized by a membership function which assigns a grade of membership 
ranging between zero and one to each object. The notions of inclusion, union, 
intersection, complement, relation, convexity, etc., are extended to such sets and 
various properties of these notions in the context of fuzzy sets are established. 

Let X be a collection of objects or a universe of discourse, then a fuzzy set A in X 
is a set of ordered pairs A={x, μA(x)|x∈X} where μA(x) is the membership function 
of x in A, and μA(x) may take any real values in the interval [0,1] and μA : X → 
[0,1]. When A is a set in the ordinary sense of the term, its membership function 
can take only two values 0 and 1, with μA(x) = 1 or 0 accordingly, as x does or 
does not belong to A. 

2.5.2       Membership Function 

A membership function (MF) is a curve that defines how each point in the input 
space is mapped to a degree of membership between 0 and 1. The input space is 
sometimes referred to as the universe of discourse. 

The set of tall people is one of the most commonly-used examples of a fuzzy set, 
where input space is all the potential heights (for example from 3 feet to 8 feet) 
and the word “tall” corresponds to a curve that defines the degree to which any 
person is tall. Fig. 12, which indicates the degree of membership for the set of tall 
people, shows curves that pass from not-tall to tall for both classical sets and 
fuzzy sets. 

 

 
Fig. 12. Membership Degree for the set of tall people. 
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2.5.3       Classification of Fuzzy Sets 

Based on membership functions, fuzzy sets are classified into four categories 
[131]: 

Normal fuzzy set: If the membership function has at least one element in the 
domain whose value is equal to 1, then the set is called normal fuzzy set (Fig. 
13(a)). 

Subnormal fuzzy set: If the membership values of the membership function are 
less than 1, then the set is called subnormal fuzzy set (Fig. 13(b)). 

Convex fuzzy set: If the membership function has membership values that are 
monotonically increasing, or monotonically decreasing, or they are monotonically 
increasing and decreasing, then the set is called convex fuzzy set (Fig. 13(c)). 

Nonconvex fuzzy set: If the membership function has membership values which 
are not strictly monotonically increasing or monotonically decreasing or both 
monotonically increasing and decreasing, then the set is called nonconvex fuzzy 
set (Fig. 13(d)). 

 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

 

Fig. 13. (a) Normal Fuzzy Set, (b) Subnormal Fuzzy Set, (c) Convex Fuzzy Set 
and (d) Nonconvex Fuzzy Set. 
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2.5.4       Logical Operations 
In fuzzy logic, unlike Boolean logic, inputs can be real numbers between 0 and 1. 
So in order to apply logical operations such as “AND” or “OR” on fuzzy sets, we 
need functions that can preserve the result of the truth table of “AND” or “OR” 
operators, and also extend to all real numbers between 0 and 1. To resolve this 
statement, Zadeh proposed the min operation for “AND” and the max operation 
for “OR”, so that A AND B becomes equivalent to min(A,B) and A OR B becomes 
equivalent to max(A,B). Finally, the operation NOT A becomes equivalent to the 
operation 1-A. Fig. 14 shows how the truth table and fuzzy operation is 
completely unchanged by this substitution. 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 14. Illustrates how two fuzzy sets are applied together by different operations 
to create one fuzzy set. 

2.5.5       IF-THEN Rules 

Rules form the basis of the fuzzy logic to obtain the fuzzy output by using 
linguistic variables as it antecedents and consequents. A single fuzzy If-Then rule 
is the form of “if x is A then y is B” where the if-part of the rule “x is A” is called 
antecedent, while the then-part of the rule “y is B” is called consequent. Note that 
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A and B have values between 0 and 1.  The input of an if-then rule is the current 
value for the input variable and the output is a fuzzy set that will be later 
defuzzified by assigning a value to the output. 

There are two parts to interpreting an if-then rule: first, fuzzifying the input and 
applying necessary operators, and then, applying that result to the consequent 
which is known as implication. 

2.5.6       Fuzzy Inference Systems 

Fuzzy inference systems (FISs) [131], also known as fuzzy rule-based systems, 
are the process of formulating the mapping from a given input to an output using 
fuzzy logic. This process involves all the steps described before, membership 
functions, fuzzy logic operators, and if-then rules. 

The two most important types of fuzzy inference are Mamdani’s method [132] 
and Sugeno’s method [133]. Mamdani inference method, introduced by Mamdani 
and Assilian, is the most commonly-used in various areas. The other well-known 
method, Sugeno method or Takagi-Sugeno-Kang method was introduced by 
Sugeno. These two types are different in the way outputs are determined.  

2.5.6.1       Mamdani’s Fuzzy Interface 

Mamdani’s fuzzy inference method is the most commonly-seen fuzzy 
methodology. This method was among the first control systems built using fuzzy 
set theory. It was proposed in 1975 as an attempt to control a steam engine and 
boiler combination by synthesizing a set of linguistic control rules, obtained from 
experienced human operators. His effort was based on Zadeh’s paper on fuzzy 
algorithms for complex systems and decision processes [134]. 

In order to compute the output of a given FIS from the inputs, these five steps 
should be done: 

Fuzzifying Inputs: The first step is determining the degree of membership of each 
input using membership functions. 

Applying Fuzzy Operators: After inputs have been fuzzified, if the antecedent of 
a rule has more than one part, the fuzzy operator is applied to obtain the result. 
The result will then be given to the output function. So the input is two or more 
membership values from fuzzified inputs and the output is a truth value. 

Applying Implication Method: Implication method is the process of determining 
the output of each fuzzy rule’s consequent. Before applying the implication 
method, we must take care of the rule’s weight which is a number between 0 and 
1. Generally this weight is 1 and so it has no effect on the implication process. 
The input of implication is a single number given by the antecedent, and the 
output is a fuzzy set. 
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Aggregating All Outputs: At this stage, all fuzzy sets that represent the outputs of 
each rule, are combined into a single fuzzy set. The input is output functions 
returned by the implication process of each rule and the output is one fuzzy set for 
each output variable. There are different methods to apply the aggregation such as 
maximum, probabilistic or, and sum. 

Defuzzifying: Although fuzziness helps during the previous steps, the desired 
final output is a single number. To do so the output fuzzy set of aggregation 
process must be converted into a single number. The most common method is the 
centroid calculation. 

2.5.5       Applications of Fuzzy Sets 

Fuzzy sets have been used in data processing, classification, signal separation, 
character recognition, image processing, stock market prediction, medicine, and 
many more. Fuzzy logic has been used in applications in control engineering, 
including combustion and IC engines. Table 5 depicts some of the important 
applications of Fuzzy Sets. 
 

Table 5: Applications of Fuzzy Sets. 
Problem Type Problem Name Authors References

Medicine 
 

Fuzzy degree of food 
and drug addiction Nieto and Torres [135] 

Fuzzy representation of 
concomitant casual 
mechanisms 

Nieto and Torres [135] 

Soil Science Fuzzy Soil Geostatics Mcbrayney and Odeh [136] 
Image 
Processing 

Edge Detection Bezdak et al. [137] 
Image Construction Nobuhara et al. [138] 

 

2.6      Gravitational Search Algorithm 

Rashedi et al. [139] proposed a new heuristic optimization method, namely 
Gravitational Search Algorithm (GSA) in 2009. GSA is basically based on the 
Newtonian laws of gravity and motion. The main idea of GSA is to consider an 
isolated system of masses, where every mass represents a solution to a certain 
problem. In the next section, we provide brief description of GSA. 

2.6.1       Natural Inspiration 

The main source of inspiration for GSA is certain rules in physics. Basically, GSA 
is based on the physical law of gravity and the law of motion. The law of gravity 
states that every particle attracts all other particles and the gravitational force 
between the particles is directly proportional to the product of their masses and 
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inversely proportional to the distance between them. In this method, agents are 
objects whose performance is dependent on their masses. All the objects attract 
each other by the gravity force. Therefore, all objects are pulled towards the 
objects with heavier masses, just as it happens in the nature. 

 

 

2.6.2       How GSA Works 

Suppose there is a system with N agents, the position of every agent is a point in 
the search space which represents a solution to the problem. The position of the 
ith agent is defined as follows: 
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Where n is the dimension of the problem, and ݔௗ is the position of the ith agent in 
the dth dimension. 

At the starting point of the solution the agents are situated randomly. At the 
specific time ‘t’ a gravitational force from mass ‘j’ acts on mass ‘i’, and is defined 
as follows:  
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Where,  

݉ is the mass of the object i,  

݉ is the mass of the object j,  

G(t) is the gravitational constant at time t,  

ܴ(t) is the Euclidian distance between the two objects i and j, and  

ε is a small constant. 

 

The gravitational constant, G, which is initialized randomly, decreases by time to 
control the search accuracy. 

In other words, G is a function of the initial value (G0) and time (t): 

),()( 0 tGGtG =                                       (8)  

The total force acting on agent i in the dimension d is calculated as follows: 
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Where ݊ܽݎ ݀  is a random number in the interval [0,1] and is used to give a 
randomized characteristics to the search. 

According to the law of motion, the acceleration of the agent i, at time t, in the dth 
dimension is directly proportional to the force acting on that agent, and inversely 
proportional to the mass of the agent: 

)(
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tM
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ii

d
id

i =                                                                     (10) 

Furthermore, the next velocity of an agent is a function of its current velocity 
added to its current acceleration. Therefore, the next position and the next velocity 
of an agent can be calculated as follows: 
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Where ܸ
ௗ(t) is the velocity of the agent in the dth dimension at time t, and ݊ܽݎ ݀ 

is a random number in the interval [0,1]. 

The masses of the agents are calculated using fitness evaluation. The heavier the 
mass of an agent, the more efficient is that agent, regarding the solution it 
represents. It is notable that as the law of gravity and the law of motion imply, a 
heavy mass has a higher attraction power and moves more slowly. 

The masses are updated as follows: 

)()(
)()()(
tworsttbest
tworsttfittm i

i −
−

=                                              (13) 

Where ݂݅ݐ(t) represents the fitness value of the agent i at time t, and the best(t) 
and worst(t) in the population respectively indicate the strongest and the weakest 
agent according to their fitness route. For a maximization problem best(t) and 
worst(t) can be defined as follows: 
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The updated masses, obtained from the equation (13) must be normalized using 
the following equation: 
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At the beginning of the system establishment, every agent is located at a certain 
point of the search space which represents a solution to the problem at every unit 
of time. The agents are evaluated and their next positions are calculated using the 
equations (11) and equation (12). Other parameters of the algorithm like the 
gravitational constant and masses are also calculated using equation (8), equation 
(13), and equation (16). These equations are updated at every unit of time. The 
search can be stopped after a certain amount of time. The general steps of the 
gravitational search algorithm are given in Fig. 15. 

GSA can be considered as a population-based heuristic algorithm, in which the 
two common aspects are exploration and exploitation. The exploration is the 
ability to navigate through the whole search space and the exploitation is the 
ability to find the optima around a good solution. GSA, like many other 
population-based search algorithms provide satisfactory results. However, the 
results can be considered much more efficient in terms of speed. The exploration 
step can be guaranteed by choosing proper values for the random parameters in 
the equations mentioned earlier, and exploitation step is taken care of when the 
objects with heavier masses start to move more and more slowly. 
 

 
 
 
 
 
 

 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 

 
 

 

 

Fig. 15. General steps of the gravitational search algorithm 
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3      Results and Discussion 

In this section, we provide Soft Computing application on edge detection, which 
is an important feature in image processing and machine vision. 

The image of “Lena” (Fig. 16(a)), which is not corrupted by any type of noise, is 
used as sample data. The experiments were done on images of size of 256×256 
pixel, and the gray level value of the experiments is ranged [0,255]. 

By using Fuzzy approach to detect the edge detection, the thresholds for the input 
image are automatically determined [140]. The output edge quality is comparable 
to those of the conventional gradient methods, which need trial and error 
adjustment of the threshold. Thus, the approach can be considered as one of the 
most efficient among fuzzy edge detectors.  Fig. 16(b) shows the result of using 
fuzzy approach. 

The edge detection technique by ACO uses a number of ants to move on the 
image for constructing a pheromone matrix. Each entry represents the edge 
information at each pixel location of the image. The movements of the ants are 
guided by the local variation of the image’s intensity values [141]. On the other 
hand, the edges can also be enhanced using ACO. Each pixel of the image is 
assumed to be connected with its 8 neighborhood pixels. The ants are placed on 
the endpoints that are extracted from the already edge-detected image. ACO will 
attempt to fix breaks of edges and extend their searching range to find the 
promising edges. Fig.16(c) illustrates the detected and enhanced edges of the 
images. 

ANN can be used as a very prevalent technology instead of classic edge detection 
methods. ANN edge detector provides less operation load and has abilities for 
reducing the effects of noise [142]. For edge detection, a training set must be 
constructed using ANN, and the pixels are taken one by one from the image. 
Subsequently, nine pixels from ten thousand input image clusters are represented. 
As an output, the pixels are taken when each nine pixel mask moves across the 
image [143]. Fig. 16(d) shows the result of ANN edge detector. 

Furthermore, by using Genetic Algorithm (GA) approach for edge detection, the 
chromosomes in the population are represented as binary arrays. An edge pixel is 
represented as 1 and 0 represents a non-edge pixel. Unlike traditional GA’s, the 
mutation in the approach is intelligent; the mutation strategies are selected and 
performed based on the examination of the local neighborhood in a 3×3 window, 
centered at a random location. Certain heuristic guidelines are followed in order to 
determine the probability distribution of the possible mutation [144]. Fig. 16(e) 
depicts the resulting edge image using GA 

Recently, in 2009, Gravitational Search Algorithm (GSA) has been proposed. 
Therefore, not a lot of research has been done on the fields like edge detection 
using this method. However, prior to the introduction of GSA by Rashedi et al. 
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[139], some studies were done based on the theory of universal gravity [145]. The 
edge detection approach used here is also based upon the idea of universal gravity 
which is extremely similar to the GSA, with a slight difference in the way the 
distance of the agents is used in the equation (7). To construct an edge detector, 
every pixel is assumed to be an object, which has some relationship with other 
pixels within its neighborhood through gravitational forces. For each pixel, the 
magnitude and the direction of the vector of the sum of all the gravitational forces 
the pixel exerts on its neighborhood, conveys the vitally important information 
about an edge structure. Fig. 16(f) shows the efficiency of GSA edge detection 
method. 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

 
(f) 

Fig. 16. The original image, (b) Fuzzy edge detector applied to the image, (c) 
ACO-based edge detector applied to the image (d) Neural Network edge detector 

applied to the image, (e) GA-based edge detector applied to the image, and (f) 
Universal Gravity edge detector applied to the image. 
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The methods mentioned above have certain advantages and disadvantages that 
separate them from each other in terms of performance. Fig. 17, and Table 6. 
Indicate some of the advantages of the edge detection methods. The disadvantages 
of the same methods are reviewed in Fig. 18, and Table 7. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 17. Advantages of the discussed Methods: (a) Universal Gravity edge 
detector, (b) Fuzzy edge detector, (c) ACO-based edge detector (d) Neural 

Network edge detector, and (e) GA-based edge detector. 
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Table 6: Advantages of the discussed methods. 
Method Advantages 

Gravitational 
Search 
Algorithm 

• Using this method, the edges are selected more smoothly in 
the selected features shown in Fig. 17(a). For instance, the 
facial features are much closer to the original image. 

• The method works acceptably well on noisy images. 
Fuzzy Sets 
Theory 

• Unlike many other edge detectors, the selected features in 
Fig. 17(b) are correctly considered as edges. 

• This method does not include a lot of parameter setting. 
• Fuzzy edge detectors are relatively faster than other 

methods. 
• Many of the Fuzzy edge detection methods work well on 

noisy images. 
Ant Colony 
Optimization 

• Unlike many other edge detectors, the selected features in 
Fig. 17(c) are correctly considered as edges. 

• The ACO-based method can be used as a great edge-
enhancement method for the already detected edges. 

Artificial 
Neural 
Network 

• In this method, the neural networks can be trained using 
specific patterns, in order to achieve more accurate edges. 

• Using this method, the edges are selected more smoothly in 
the selected features shown in Fig. 17(d). For instance, the 
facial features are much closer to the original image. 

Genetic 
Algorithm 

• Unlike many other edge detectors, the selected features in 
Fig. 17(e) are correctly considered as edges. 

 

 

 

 

 

 

 



 
 

 
 

 
 
 
Amir Atapour et al.                                                                                        30 

 

Fig. 18. Disadvantages of the discussed Methods: (a) Universal Gravity edge 
detector, (b) Fuzzy edge detector, (c) ACO-based edge detector (d) Neural 

Network edge detector, and (e) GA-based edge detector. 

 
 
 
 
 
 
 
 
 
 
 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 



  
 
 
31                                     Advances of Soft Computing methods in Edge Detection  

Table 7: Disadvantages of the discussed methods. 
Method Disadvantages 

Gravitational 
Search 
Algorithm 

• Many parameters have to be set correctly, in order to achieve 
the best possible edge detector for every image (including 
mask, threshold, etc.). 

• Unlike many other edge detectors, the selected features 
shown in Fig. 18(a) are not considered as edges by mistake. 

Fuzzy Sets 
Theory 

• Unlike many other edge detectors, the selected features 
shown in Fig. 18(b) are not considered as edges by mistake. 

Ant Colony 
Optimization 

• Many parameters have to be set correctly, in order to achieve 
the best possible edge detector for every image (including 
the number of iterations, the number of ants, etc.). 

• Unlike many other edge detectors, the selected features 
shown in Fig. 18(c) are not considered as edges by mistake. 

• This method works relatively slow, in comparison with other 
edge detection methods. 

Artificial 
Neural 
Network 

• As shown in the selected features in Fig. 18(d), many of the 
edges that are usually found by other edge detection methods 
are not considered as edges. 

Genetic 
Algorithm 

• Many parameters have to be set correctly, in order to achieve 
the best possible edge detector for every image (including 
the number of iterations, the number of individuals in the 
selected population, etc.). 

• Unlike many other edge detectors, the selected features 
shown in Fig. 18(e) are not considered as edges by mistake. 

• This method works relatively slow, in comparison with other 
edge detection methods, and can lead to unacceptable results 
depending on the number of iterations. 

 

4      Conclusion & Future Work 
In this paper, a brief description of five major Soft Computing techniques is given; 
Fuzzy sets, Artificial Neural Networks, Ant Colony Optimization, Genetic 
Algorithm, and Gravitational Search Algorithm, and the advances made in their 
structure and their applications, especially in the field of edge detection 
[140,141,142,143,144,145] were discussed. 

All the techniques were compared with each other by applying them on edge 
detection, which is of the utmost importance in the field of image processing. The 
performances of the techniques were compared by presenting the results of each 
technique, when used on the same problem in the same conditions. This paper 
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presents a survey on soft computing methods particularly for edge detection. All 
of these techniques have relative advantages and disadvantages and there are no 
rules as to when a particular technique is more or less suitable for a new 
application; hence Free Lunch Theorem should be applied.  

Although an incredible amount of research has been done on using soft computing 
methods in edge detection, many of the vast and newly-proposed methods still 
have a lot of potential for improvement. There are a lot of possible hybrid 
methods that the researchers can explore. Neuro-fuzzy, which is a combination of 
neural networks and fuzzy sets theory, can be an excellent example of a highly 
advantageous method for edge detection. ACO can act as an edge enhancement 
method, and is predicted to give astonishing result when applied on edges 
detected using a fuzzy method.  

There are many other optimization methods that could be possible to integrate 
with ANN, in terms of training or as a hybrid method, such as Differential 
Evolution [146], Bacteria Foraging [147], Artificial Fish Swarm Algorithm [148], 
and others. Future research can hopefully end in new methods with better results.  
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