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Abstract 

University Course Timetable Problem is NP-Hard combinatorial 
optimization problem which lacks analytical solution methods. It has 
received tremendous attention from disciplines like Operations Research 
and Artificial Intelligence during past few years given its wide use in 
universities. Several algorithms have been proposed most of which are 
based on heuristics like Search techniques and Evolutionary Computation. 
We present Fuzzy Genetic Heuristic Algorithm to solve the problem. The 
method incorporates Genetic Algorithms using indirect representation 
based on event priorities, Micro Genetic Algorithms and heuristic Local 
Search operators to tackle real world Timetable Problem from St. Xavier’s 
College, India. Fuzzy Set models measure of violation of soft constraint in 
fitness function to take care of inherent uncertainty and vagueness involved 
in real life data. The solutions are developed with respect to manual 
solution developed by College staff. The proposed technique satisfies all 
hard constraints of problem and achieves significantly better score in 
satisfying soft constraints. The algorithm is computationally intensive in 
comparison to standard Genetic Algorithm based benchmark heuristics. 
The reduction computational complexity of the algorithm can be considered 
as future work for further research.  

Keywords: Fuzzy Genetic Heuristic, Hard Constraints, Soft Constraints, University 
Course Timetable Problem  
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1 Introduction 
 
University Course Timetable Problem (UCTP) [7], [17], [51], [65] represents an 
important class of optimization problem in Operations Research. It is considered as one 
of the most difficult problems faced by universities and colleges today. The problem can 
be defined as allocation of given resources (teachers, students and classrooms) to objects 
(courses) being placed in space time satisfying all university constraints and optimizing 
utilization of existing facilities such that a set of desirable objectives are satisfied. 
Basically, university timetable problem exists in two forms viz., course and exam 
timetable formats. Here our focus is only on course timetable problem. The university 
course timetable requires several slots and with different categories such as lectures, 
tutorials and practical sessions, which fits within a week and repeats for whole semester. 
Given the increasing number of students in universities, a large number of courses are 
offered every term. Each course has different number of enrolled students and each 
classroom has different capacities which make assignment of courses to classrooms 
complicated. Furthermore, it is not only enough to schedule course in classroom with 
higher capacity than the number of enrolled students, since this can still lead to inefficient 
utilization of classrooms which can cause difficulties for teachers and students. The 
automation of timetable problem is thus an important task as it saves lot of man-hours 
work to institutions and provides optimal solutions with constraint satisfaction that can 
boost productivity, quality of education and services. However, large-scale timetables 
such as university timetables may need many hours of work spent by qualified person or 
team in order to produce high quality timetables with optimal constraint satisfaction [37] 
and optimization of timetable’s objectives at the same time.  

 

The real life timetable problems have many forms like education timetable (course and 
exam), employee timetable, timetable of sports events, timetable of transportation etc. 
Timetable problems as well as scheduling problems are generally NP-Hard constrained 
optimization problems [13], [37] of combinatorial nature and no optimal algorithm is 
known which generates solution within reasonable time. These problems are mainly 
classified as constraint satisfaction problems [5]. There are number of versions of UCTP 
differing from one university to another [18], [59]. A lot of work has been done on this 
type of problem with respect to their studies on specific universities and many 
formulations and algorithms have been developed One of the important computing 
paradigms is graph coloring concept [31], [53] where vertices represent courses and an 
arc joins two vertices only if they cannot be scheduled at same time. The problem is thus 
to find chromatic number of resulting graph [11]. However, chromatic number problem is 
also NP-Hard. Due to complexity of the problem, most of work done concentrates on 
heuristic algorithms which try to find good approximate solutions [1], [2], [3], [4], [6], 
[8], [9], [19], [21], [35], [36], [38], [39], [40], [41], [42], [43], [44], [49], [51], [56], [60], 
[62]. Some of these include Genetic Algorithms (GA) [14], [25], [48], [54], [57], [61], 
[62], Tabu Search [22], [30], [46], [64], Simulated Annealing [20], [55], [63] and recently 
used Scatter Search [45] methods. Heuristic optimization methods are explicitly aimed at 
good feasible solutions that may not be optimal where complexity of problem or limited 
time available does not allow exact solution. Generally, two questions arise (i) How fast 
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the solution is computed? and (ii) How close the solution is to optimal one? Tradeoff is 
often required between time and quality which is taken care of by running simpler 
algorithm more than once, comparing results obtained with more complicated ones and 
effectiveness in comparing different heuristics. The empirical evaluation of heuristic 
method is based on analytical difficulty involved in problem and pathological worst case 
result. 

 

In recent past these heuristic tools have been combined among themselves with 
knowledge elements [1], [10], [15], [20], [25], [44], [55], [62], [63] as well as with more 
traditional approaches such as Statistical and Fuzzy Analysis [32], [33], [66] to solve 
extremely challenging problems. Developing solutions with these tools offers two major 
advantages viz. (i) Shorter development time than traditional approaches and (ii) Robust 
systems being insensitive to noisy and missing data. Keeping in view recent past, this 
work attempts to develop Fuzzy Genetic Heuristic (FGH) algorithm for university 
timetable at St. Xavier’s College, Kolkata, India for which manual solutions are 
available. GA heuristic is combined with Fuzzy Sets to handle imprecisely defined 
parameters of problem which are apparent in real life data. Fuzzy Logic is a 
computational paradigm that generalizes classical two-valued logic for reasoning under 
uncertainty. In order to achieve this, notation of membership in a set needs to become a 
matter of degree. This is the essence of Fuzzy Sets [32], [66]. By doing this two things 
are accomplished (i) The ease of describing human knowledge involving vague concepts 
and (ii) The enhanced ability to develop cost-effective solution to real-world problem. It 
is multi-valued logic which is model-less approach and clever disguise of Probability 
Theory.  

 

GA [12], [24] is search algorithm based on conjecture of natural selection and genetics. It 
is different from other search techniques in several aspects such as (i) The algorithm is 
multi-path that searches many peaks in parallel and hence reduces possibility of local 
minimum trapping; (ii) It works with coding of parameters instead of parameters 
themselves which help genetic operator to evolve current state into next state with 
minimum computations; (iii) The fitness of each string is calculated evaluated to guide its 
search instead of optimization function; (iv) There is no requirement for derivatives or 
other auxiliary knowledge such that no computation of derivatives or other auxiliary 
functions are required; (v) GA explores search space where probability of finding 
improved performance is high. Hence, GA is often viewed as black box approach. In 
contrast, Fuzzy Logic models are easy to comprehend because they use linguistic terms 
and structured rules. Unlike GA, Fuzzy Logic does not come with search algorithm. 
Fuzzy models adopt techniques from other areas such as Statistics, Linear System 
Identification etc. Since, GA has the search ability; it is natural to merge the two 
paradigms. This merger creates FGH algorithm, which describes Fuzzy Set model using 
GA search attribute. FGH uses an indirect representation featuring event allocation 
priorities and invokes timetable builder routine for constructing complete timetable. The 
algorithm incorporates number of techniques and domain specific heuristic local search 
operators to enhance search efficiency. The non-rigid soft constraints involved in the 
problem are basically optimization objectives for search algorithm, for which there is an 
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inherent degree of uncertainty involved in objectives which comprises of different 
aspects of real life data. This uncertainty is tackled by formulating measure of violation 
parameter of soft constraint in fitness function using fuzzy membership functions. The 
solutions are generated against manual problem of St. Xavier’s College and compared 
with respect to standard GA based benchmark problems. It has been shown through 
extensive simulation that on incorporating certain combinatorial and domain specific 
operators search efficiency of GA is significantly enhanced. To performance of GA is 
further improved through Micro GA which explores the use of small population size. 
This Paper is organized as follows. The section 2 illustrates UCTP. This is followed by 
discussion of various uncertainty measures involved in UCTP. The next section presents 
FGH algorithm for UCTP. The simulation results are given in section 5. The section 6 
gives the conclusions. Finally, future work underlying the problem is given in section 7. 

 
2 University Course Timetable Problems 
 

UCTP [17], [40], [42], [52], [65] consists in finding the exact time allocation within 
limited time period of number of events (courses-lectures) and assign to them number of 
resources (teachers, students and classrooms) such that the constraints are satisfied. In 
most universities courses are organized in number of semesters. The constraints to be 
satisfied by timetable are usually divided into two categories viz. hard and soft 
constraints. Hard constraints should be rigidly fulfilled. Such constraints include: (i) No 
resource (teachers, students and classrooms) may be assigned to different events at same 
time; (ii) Events of same semester must not be assigned at same time slot (in order for 
students of semester to be able to attend all semester courses); (iii) Assigned resources to 
an event must belong to set of valid resources for that event. In this regard, the lecture is 
held in a classroom if proper infrastructural arrangements are there to organize the 
lecture. Similarly, the lecture is assigned to teacher if he has knowledge as well as 
capability of delivering particular lecture. Likewise, some lectures are assigned to 
teachers if they have knowledge to deliver the lecture. On the other hand, it is desirable to 
fulfill soft constraints to the possible extent but is not fully essential for valid solution. 
Therefore, soft constraints can also be seen as optimization objectives for search 
algorithm. Such constraints are: (i) Schedule an event within particular window of whole 
period (such as during evenings); (ii) Minimize time gaps or travel times between 
adjacent lectures of same teacher, etc. The problem considered for this work is taken 
from St. Xavier’s College, Kolkata, India and involves weekly scheduling of all courses 
of Department of Computer Science. The problem specifications are given in Table 1. 
Hard and soft constraints considered for this problem are given in Table 2 and 3 
respectively. 

 

In Table 1, value 10 for the field time-periods within a day denote possible starting 
periods of each class (from 8:00 am to 6:00 pm) and not complete time slots that can 
accommodate equal number of consequent classes. As different lectures have different 
durations (1 to 2 hours), real number of consequent classes that can be scheduled within a 
day depends on specific set of classes chosen and their durations. Any solution satisfying 
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above constraints is feasible schedule for the problem. The specific case is considered as 
benchmark and reasons are: (i) The real constraints were easily accessed for developing 
manual solution to problem, in order to set-up university course timetable problem on 
realistic basis; (ii) There was an easy access to manual solutions for the problem which 
facilitates making easy comparisons with present results; (iii) The specific problem is 
generally a NP-Hard problem and serves as demanding benchmark for developing an 
efficient optimization algorithm.  There are certain difficulties involved in chosen 
problem case which are justified by following facts: (i) Problem has two types of lectures 
viz. theory and laboratory with diverse characteristics and constraints; (ii) Number of 
classrooms is generally small (viz. only 19) in College that accommodates all taught 
lessons, a fact which makes timetable schedule very tight. Some classrooms are 
laboratories designed for laboratory classes and others are theory classrooms. All 
laboratories are occupied by classes for full number of periods per day and all five days 
with only minor time-gaps; (iii) Specific classes are taught in specific classrooms. Theory 
classes are assigned to any of the lecture classrooms, but laboratory classes must be 
assigned to specific laboratory classrooms; (iv) There are quite large number of teachers, 
each of whom has their own minimum (4) and maximum (12) hour limits per week and 
ability to teach in limited set of classes. 

 
Table 1: Timetable Problem Specifications 

 
Serial Number Parameter Description Quantity 

1 Number of Courses 90 
2 Number of different Lectures 200 
3 Number of scheduled Events 210 
4 Number of Semesters 11 
5 Type of Lectures (Theory/Laboratory) 2 
6 Number of Teachers 50 
7 Number of Classrooms/Laboratories 19 
8 Number of Days 5 
9 Number of Periods within a Day 10 

 
3 Uncertainty Measures in University Course Timetable 
Problem 
 

In this section, we discuss various uncertainty measures involved in formulating UCTP. 
The uncertainty measures are associated with soft constraints of problem. Fuzzy Sets are 
used to model uncertainty and vagueness associated with soft constraints in final 
timetable schedule by allowing grades of membership in the set. The model allows 
decision maker to express his preference to ultimate schedule such that related measure 
of violation is appropriately represented. Among soft constraints, best availability 
schedule of each teacher, maximum and minimum workload of each teacher as well as 
classes broken into more than one non-contiguous lecture within a week where specific 
number of days are left between lectures are uncertain due to both human as well as 
environment factors. In addition, travel time of teachers and students between rooms 
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within campus, time gaps within schedule of each teacher and time gaps within schedule 
of each room which have to be minimized, have an inherent degree of uncertainty and 
impreciseness factors associated. These constraints are now represented using Fuzzy Sets.  

 
Table 2: Hard Constraint Specifications 

 
Serial Number Hard Constraint 

1 No resource (teacher, student or classroom) is assigned to different 
events at same time 

2 Events of same semester are not assigned at same time slot when 
both events are of type theory or when one event is theory and 

other event is laboratory. Same semester events run concurrently 
only if they are both of type laboratory, as for each course 4 

laboratory classes are scheduled within a week, each attended by 
different group of students. 

3 Maximum number of time periods per day should not exceed 
particular value (10) 

4 Each lecture is held in a classroom belonging to specific set of 
valid rooms for lecture 

5 Each classroom has its own availability schedule 
6 Each lecture is assigned to a teacher that belongs to specific set of 

teachers that can deliver lecture 
7 Specific lectures must be rigidly assigned to specific teachers. 
8 Theory classes need one teacher while Laboratory classes 

need two teachers 
 

Table 3: Soft Constraint Specifications 
 

Serial 
Number 

 
Soft Constraint 

1 Every teacher has his own availability schedule ensuring which he submits 
plan with desirable time periods that suits him best 

2 Every teacher has minimum and maximum limit of weekly work-hours 
which are 12 and 4 respectively 

3 If class is broken in more than one non-contiguous lectures within a week, 
specific number of days must be left between these lectures 

4 Travel time of teachers and students between classrooms within  
campus is to be minimized 

5 Time gaps within schedule of each teacher is to be minimized 
6 Time gaps within schedule of each classroom is to be minimized 

 
Definition: A fuzzy set A~  is defined by membership function )(~ xAµ which assigns to 
each object x in universe of discourse X, a value representing its grade of membership in 
fuzzy set given by [32], [66], 
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]1,0[:)(~ →XxAµ         (1) 

A variety of shapes are used to represent fuzzy memberships such as triangular, 
trapezoidal, bell-curves, s-curves etc. Conventionally, choice of curve shape is subjective 
and allows decision maker to express his preferences.  The estimation of time elapsed 
with respect to soft constraints 4th, 5th and 6th is obtained by taking into consideration 
nature of teacher, student and location of rooms. While some people walk faster, others 
may walk slowly as a result of which elapsed time are basically dependent on walking 
speed of different people. Uncertain elapsed times ijp~ are modeled by using triangular 

membership functions [32], [66] represented by triplet ),,( 321
ijijij ppp , where 1

ijp and 3
ijp are 

lower and upper bounds of elapsed time while 2
ijp  is modal point as represented in Fig.1. 

The use of triangular fuzzy numbers to model uncertainty in elapsed times may be 
attributed to the fact that three state representations through triplet ),,( 321

ijijij ppp most 
accurately simulate real life data available. 

 
Fig. 1: Fuzzy representation of Elapsed Times 

 

 
Fig. 2: Fuzzy representation of Schedule of Teacher 

 
The 2nd soft constraint i.e. weekly work-hours of each teacher can similarly be 
represented by triangular membership functions [32], [66] represented by 
triplet ),,( 321

ijijij www , where 1
ijw and 3

ijw  are minimum and maximum bounds of weekly 

work-hours of each teacher while 2
ijw  is modal point.  The similar justification for using 

triangular fuzzy membership functions hold for weekly work-hours also.  
  
The soft constraints 3rd and 1st are represented using LR trapezoidal membership 
functions [32], [66]. The specific number of days must be left between non-contiguous 
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lectures within a week is given by days elapsed jd~ and represented by doublet ),( 21
jj dd , 

where 1
jd and 2

jd denote left and right end of trapezoid as depicted in Fig. 2. The schedule 
of each teacher with respect to his own availability and desirable time periods that suits 
him best is given by schedule js~  and represented by  doublet ),( 21

jj ss , where 1
js and 

2
js denote left and right end of trapezoid. Likewise, use of left and right end of trapezoid 

effectively models real life data available for 3rd and 1st constraints.  
 

4 Fuzzy Genetic Heuristic for University Course Timetable 
Problem 
 
This section presents FGH algorithm for UCTP. To solve the timetable problem, we 
develop an optimization method based on FGH that incorporates number of techniques 
and domain specific local search operators. GA an iterative search procedure widely used 
in solving optimization problems, motivated by biological models of evolution. A 
population of candidate solution is maintained in each iteration [12], [24]. Genetic 
operators such as mutation and crossover are applied to evolve solutions and find good 
solution that has high probability to survive for next iteration. First, representation 
method is required to encode timetable solution into an encoded form or chromosome 
suitable for applying genetic operators. Generally, two different approaches are 
considered viz. direct and indirect approaches. A direct representation [2] directly 
encodes all event attributes viz. day, time slot, teacher, classroom etc. for all events. In 
these cases GA has to decide for all timetable parameters and deliver complete and 
constraint free schedule. This results in very large search space having solutions 
satisfying all constraints. However, directly encoded solutions, that undergo genetic 
operators, frequently result in invalid solutions that have to be handled in some manner. 
An indirect representation [49] on other hand, considers encoded solution i.e. 
chromosome that usually represents an ordered list of events which are placed into 
timetable according to some predefined method (timetable builder). The timetable 
builder can use any combination of heuristics and local search to place events into 
timetable while observing constraints of the problem.  

 

For GA implementation of this work, we have considered an indirect representation that 
encodes four fields for each event into chromosome: (i) Day to allocate event; (ii) 
Teachers (1 or 2) to assign to event; (iii) Classroom where event will be held; (iv) Priority 
to allocate event within day. All fields are first encoded as integers and then entered into 
chromosome as binary numbers. When GA produces such a solution, it first decodes it to 
gain these four fields for every event in schedule. Then it invokes timetable builder 
routine viz. timetabler that works as follows: (i) It separates events into clusters, one for 
each day; (ii) For every cluster, it sorts events according to their priority values and in 
ascending order (small values are with high priority and are placed first); (iii) It takes first 
event in cluster (the event with higher priority), marks it as taken, and places it into 
schedule of particular day; (iv) Starting from time slot 1 it places event and checks if any 
constraints are violated. If allocation is not fixed, algorithm moves on to next event in 
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cluster; (v) If any constraints are violated, they are allocated to event into subsequent 
time periods until all constraints are satisfied; (vi) If there exists no time period for which 
all constraints are satisfied, event is marked to violate maximum time periods exceeded 
per day constraint (3rd constraint from Table 2); (vii) The algorithm continues with next 
event in list. When all events have been processed, timetabler moves to next cluster 
(day), and this is repeated for all days in the schedule. A similar algorithm has been given 
in by [6] where non-evolutionary heuristic algorithm is proposed for examination 
timetable problem. All events are sorted according to measure of difficulty figure that is 
dynamically adapted during run and difficult to schedule events are handled first. In this 
work, allocation priority of events is determined genetically. The timetabler satisfies all 
hard constraints of Table 2 and all other constraints are satisfied by GA. 
 

4.1 Formulation of Fitness Function   
 

Now we discuss the formulation of fitness function for FGH algorithm. After timetabler 
has produced timetable, it is evaluated through fitness function that analyzes the solution 
and calculates its overall fitness values as sum of weighted scores and penalties for all 
constraints i.e., hard and soft. The fitness function used here is [12], [24], [32], [33], [66], 

∑∑
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×+×=
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where, x is timetable under evaluation, )(xP soft
i is measure of violation of ith soft 

constraint, )(xP hard
i is measure of violation of ith hard constraint, s

iw is weight factor for 
ith soft constraint and h

iw is weight factor for ith hard constraint. The weights s
iw and h

iw  ∈ 
[0, 1] used in GA are normalized and randomly distributed, as weights are not known 
with certainty. In order to explore different areas of search space, in every iteration 
weights are changed. The function )(xF is to be minimized. The impreciseness and 
uncertainty aspects related to measure of violation of soft constraints are taken care of 
using Fuzzy Logic. However, impreciseness and uncertainty aspects related to measure of 
violation of hard constraints are handled using probabilistic measures as constraints are 
defined rigidly. The nature of fitness function is dependent on both measures of violation 

)(xP soft
i and )(xP hard

i  which assesses ultimate quality of different allocations within 
population. Fitness function value is changed in every iteration of algorithm, in order to 
explore different areas of the search space. Since, changes in weights affects final 
solution, these changes are basically random in nature.  
 
One of measures of violation for soft constraints is calculated taking into consideration 
estimation of time elapsed with respect to different resources and events. Fuzzy elapsed 
times between resources and events imply fuzzy completion times. The question arises 
how to compare fuzzy completion times with fuzzy elapsed times between resources and 
events. This is investigated here based on possibility measure [19]. Possibility measure 

)~(~ ijV p
j

π  evaluates possibility of fuzzy event, jV~ occurring within fuzzy set ijp~ . It is used 

to compute measure of violation of time elapsed with respect to different resources and 
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events such that fuzzy completion times are minimized. Since, uncertainty in elapsed 
times ijp~ are modeled by using triplet ),,( 321

ijijij ppp , we consider possibility measure as 

being composed of two fuzzy events jV1
~ and jV2

~ . The event jV1
~ is considered for pair 

),( 21
ijij pp and event jV2

~ considers pair ),( 32
ijij pp of elapsed times.  Thus, measure of 

violation is given by, 
)}}(),(min{sup)},(),(min{min{supsup1)~()( ~~~~~

21
xxxxpxP

ijjijjj pVpVijV
soft

elapsedtime µµµµπ −==− (3)
nj .,,.........1=     

where, )(~ x
jVµ , )(

1
~ x

jVµ , )(
2

~ x
jVµ and )(~ x

ijpµ are membership functions of fuzzy sets jV~ , 

jV1
~ , jV2

~ and ijp~ respectively. 
 

The other measure of violation for soft constraints is calculated taking into consideration 
weekly work-hours of each teacher with respect to minimum and maximum bounds of 
weekly work-hours of each teacher. Fuzzy weekly work-hours of each teacher lead to 
computation of fuzzy maximum and minimum of weekly work-hours.  The comparison 
of fuzzy weekly work-hours with fuzzy maximum and minimum of weekly work-hours 
of each teacher is performed using above possibility measure [19].  Possibility measure 

)~(~ ijP w
j

π  evaluates possibility of fuzzy event, jP~ occurring within fuzzy set ijw~ . It is used 

to compute measure of violation of weekly work-hours of each teacher with respect to 
minimum and maximum bounds of weekly work-hours of each teacher. As uncertainty 
involved in weekly work-hours jw~ are modeled by using triplet ),,( 321

ijijij www , we consider 

possibility measure as being composed of two fuzzy events jP1
~ and jP2

~ . The event jP1
~ is 

considered for pair ),( 21
ijij ww  and event jP2

~ considers pair ),( 32
ijij ww of weekly work-hours.  

Thus, measure of violation is given by, 

)}};(),(min{sup)},(),(min{min{supsup1)~()( ~~~~~
21

xxxxwxP
ijjijjj wPwPijP

soft
hourswork µµµµπ −==− (4)

nj .,,.........1=  
where, )(~ x

jPµ , )(
1

~ x
jPµ , )(

2
~ x

jPµ and )(~ x
ijwµ are membership functions of fuzzy sets jP~ , 

jP1
~ , jP2

~ and ijw~ respectively. 
 

The third measure of violation for soft constraints is calculated by considering schedule 
of each teacher with respect to his own availability and desirable time periods that suits 
him best. Fuzzy availability of each teacher gives fuzzy desirable time periods. The 
comparison of fuzzy availability with fuzzy desirable time periods is performed using 
possibility measure [19]. Possibility measure )~(~ jE s

j
π  evaluates possibility of fuzzy 

event, jE~ occurring within fuzzy set js~ . It is used to compute measure of violation of 
each teacher with respect to his own availability and desirable time periods that suits him 
best and is given by, 
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njxxsxP
jjj sEjE

soft
schedule ,,.........1)};(),(min{sup1)~()( ~~~ =−== µµπ  (5) 

where, )(~ x
jEµ and )(~ x

jsµ are membership functions of fuzzy sets jE~ and js~ respectively. 

 

The fourth measure of violation for soft constraints is calculated by considering specific 
number of days left between non-contiguous lectures within a week and corresponding 
upper and lower bounds. Fuzzy specific number of days left between non-contiguous 
lectures within a week results in computation of fuzzy upper and lower bounds. The 
comparison between above two aspects is performed using possibility measure [19]. 
Possibility measure )~(~ jM d

j
π  evaluates possibility of fuzzy event, jM~ occurring within 

fuzzy set jd~ . It is used to compute measure of violation of specific number of days left 
between non-contiguous lectures within a week and is given by, 

njxxdxleftdaysP
jjj dMjM

soft ,,.........1)};(),(min{sup1)~()( ~~~ =−==− µµπ   (6) 

where, )(~ x
jMµ and )(~ x

jdµ are membership functions of fuzzy sets jM~ and jd~ respectively. 

From above discussion it is clear that, some of problem’s constraints are handled by 
timetabler during construction of complete solution from genetically produced abstract 
solution. The rest of constraints are handled using penalty function that is composed as 
weighted sum of penalty terms, each of which corresponds to measure of violation of 
each constraint. Moreover, soft constraints could also be seen as optimization objectives 
that have to be optimized to possible extent. 

  
4.2 Genetic Operators 
 
The next issue to consider is the blend of genetic operators incorporated into GA, in order 
to achieve maximum optimization performance. To do this we first considered standard 
operators as well as general purpose combinatorial operators. The operators and their 
parameters considered are shown in Table 4. The standard GA setup employed Roulette 
Wheel Parent Selection, Population of 50 solutions, Standard 5-point Crossover Operator 
and Bit Mutation Operator (Probability = 0.001 per bit elitism) [12], [24]. The offspring 
replaced whole population of parents with Fitness scaling and generation limit of 7000 
generations. The operators and their parameters of Table 4 were tested before adopting 
them in final algorithm. Due to specific nature and intractability aspect involved in 
problem we have also considered domain specific Hill Climbing Operators that are 
applied only to best solution of each generation. These operators include [12], [24]:  

 

(i) Change Day Hill Climbing Operator: This operator selects an event at random (1st 
and 2nd constraints of Table 2) and changes its encoded day of allocation field, assigning 
to it all day values sequentially, except from original day value. Every time resulting 
timetable is evaluated, and if it scores better than original then change is kept otherwise 
old day value is restored.  
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(ii) Fix Teacher Hill Climbing Operator: This operator finds all events with teacher 
class constraint violations (6th constraint of Table 2) and selects one such event at 
random. Then it changes encoded teacher to allocate field, assigning to it all valid 
teachers sequentially except from original one. Every time resulting timetable is 
evaluated, and if it evaluates better than original then change is kept otherwise old 
teacher value is restored. This operator is also successfully applied to 7th and 8th 
constraints of Table 2. 

 

(iii) Fix Classroom Hill Climbing Operator: This operator considers events with 
classroom availability constraint violations (5th constraint of Table 2) and selects one 
event at random. Then it changes encoded classroom to allocate field, assigning to it all 
valid classrooms sequentially except from original one. Every time resulting timetable is 
evaluated, and if it evaluates better than original then change is kept otherwise old 
classroom value is restored.  

 

(iv) Fix Room Hill Climbing Operator: This operator finds all events with classroom 
lecture constraint violations (4th constraint of Table 2) and selects one such event at 
random. Then it changes encoded room to allocate field, assigning to it all valid 
classrooms sequentially except original one. Every time resulting timetable is evaluated, 
and if it evaluates better than original then change is kept otherwise old room value is 
restored.  

 

(v) Fix Day Hill Climbing Operator: This operator finds all events that are allocated 
beyond maximum time periods per day limit (3rd constraint of Table 2), and selects one 
such event at random. Then it changes encoded day of allocation field, assigning to it all 
day values sequentially, except from original one. Every time resulting timetable is 
evaluated, and if it evaluates better than original then change is kept otherwise old day 
value is restored.  

 

It is obvious that above operators are specifically designed to give GA ability to fulfill all 
hard constraints of Table 2. The effectiveness of these operators has been also tested and 
simulation results are given in the next section. The FGH Algorithm (pseudo-code) is 
illustrated in Fig. 3. In the FGH algorithm, the event priority is given by placing small 
values first with high priority. The algorithm is not swapping evenly between clusters as 
all the constraints are not satisfied always and there is violation between clusters. If an 
event is not scheduled then timetabler will generate inconsistent results. 

 
5. Simulation Results  
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Simulations are performed for all parameter combinations of Table 4 before deciding best 
combination of operators to be adopted in ultimate implementation. However number of 
combinations is prohibitive for exhaustive evaluation. The different Genetic Operators 
are categorized as (a), (b), (c) etc. based on different values of parameters given in [27], 
[28], [29], [50]. Thus, elitism like technique has been applied in order to reduce number 
of simulations needed. First a simulation experiment was conducted for standard GA 
setup discussed in previous section. The experiment consisted of 20 independent runs. 
After completion of runs, three statistical figures were calculated viz. the overall best 
solution quality achieved, the overall worst solution quality achieved and the average 
solution quality achieved throughout 20 runs. Then, first operator setup of Table 4 was 
added to standard GA setup and another simulation round of 20 runs was launched. The 
results were compared to those of standard setup via three statistical figures mentioned 
above. If new setup had better performance than original, then new setup was adopted as 
best so far setup. Otherwise tested setup was ignored. With this method only 25 
simulations of 20 runs each are needed to evaluate operators and their parameters of 
Table 4. The validity of this method is based on assumption that operators are more or 
less independent of each other, which is obviously true as justified by experimental 
results. The simulation results for operators of Table 4 are given in Table 5, where 
adopted setups are displayed in bold typeface. From Table 5 it is clear that operators that 
exhibited best performance and adopted in GA scheme are as follows [12], [24]:   

 
(i) Uniform Crossover; (ii) Window Mutation Operator (Probability = 0.4); (iii) Swap 
Chromosome Operator (Probability = 0.1); (iv) Mutate Chromosome Operator 
(Probability = 0.1); (v) Varying Fitness Function with square increase; (vi) GA 
Population of 400 genotypes; (vii) Micro GA Combinatorial Hill Climbing Operator  

 
Initialize Population of candidate solutions; 
Compute Fitness function; 
While (stopping criterion is not satisfied) 
{ 
   Perform Mutation to evolve solutions; 
   Perform Crossover to evolve solutions; 
   Encode timetable solution into four fields; 
   Decode to gain four fields for every event;  
   Invoke timetabler:  

      Separate events into clusters one for each day;  
      For (every cluster) 
      { 
                      Sort event according to their priority values in ascending order    
                      (small values are with high priority and are placed first);  
                      Take first event in cluster (event with higher priority), mark it and           
                       place it into schedule of particular day;  
                      Starting from time slot 1,  
                        Place event and check if any constraints are violated;   
                        If (allocation is not fixed) 
                            then move to next event in cluster;  
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                        If (any constraints are violated) 
                            then allocate to event into subsequent time periods;  
                        If (there exists no time period for which all constraints are satisfied) 
                           then mark event to violate maximum time periods exceeded per   
                                   day constraint; 

                              Continue with next event in list until all events are processed; 
              } 
              Repeat for all days in schedule; 
   Evaluate timetabler through Fitness function that calculates overall fitness values; 
   Update Population; 
}  
return results; 
 

Fig. 3: Fuzzy Genetic Heuristic Algorithm (pseudo-code) 
 

To improve the performance of GA in this work Micro GA [24] is used.  The Micro GA 
strategy is derived by [24] explores the use of small population sizes on GA applications. 
Reeves [54] showed that for Binary encoding a small population size is sufficient to reach 
the entire search space by Crossover alone. With small populations used here there is a 
rapid convergence to possible sub-optimal solution and frequent regeneration of 
population members to ensure diversity during the search process. The Micro GA is 
effectively used is to repeatedly generate new population members as soon as a measure 
of convergence has been achieved in the cycle of GA operation. The Micro GA gives 
significant improvement in Fitness evaluation during the entire course of the optimization 
process. This reduces the overall computational effort thereby providing significant 
improvement in time complexity of the algorithm.  

 

It may be mentioned that the population adopted here for GA implementation is quiet 
large. To achieve appreciable results micro setting of the population should be at least 40 
to 50 percent of population considered. 

 

Table 4: Standard Genetic Operators and Parameters considered 

 
Serial Number Genetic Operator Parameter 

1 (a) Crossover 40-point 
1 (b) Crossover Uniform 
2 (a) Mutation Probability = 0.007
2 (b) Mutation Probability = 0.02 
3 (a) Window Mutation Operator Probability = 0.1 
3 (b) Window Mutation Operator Probability = 0.4 
4 (a) Swap Chromosome Operator Probability = 0.1 
4 (b) Swap Chromosome Operator Probability = 0.4 
5 (a) Swap Bit Operator Probability = 0.1 
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5 (b) Swap Bit Operator Probability = 0.4 
6 (a) Swap Window Operator Probability = 0.1 
6 (b) Swap Window Operator Probability = 0.4 
7 (a) Random Genotype Operator Probability = 0.1 
7 (b) Random Genotype Operator Probability = 0.4 
8 (a) Mutate Chromosome Operator Probability = 0.1 
8 (b) Mutate Chromosome Operator Probability = 0.4 

9 Bit Swap Mutate Hill Climbing Operator Probability = 0.5 
10 Window Swap Hill Climbing Operator Probability = 0.5 

11 (a) Varying Fitness Function Linear  
11 (b) Varying Fitness Function Square 
11 (c) Varying Fitness Function Exponential 
12 (a) Genetic Algorithm Population 200 
12 (b) Genetic Algorithm Population 400 

13 Micro Genetic Algorithm  
Combinatorial Hill Climbing Operator 

Probability = 1.0 

 
By adding these operators to standard GA scheme we have managed to evolve best 
overall solution from value of 61087 for standard setup down to value of 22982 for 
advanced setup. The next step tests effectiveness of domain specific Hill Climbing 
Operators discussed in section 4. For this reason four more simulation experiments were 
conducted. Each experiment incorporated one of four domain specific operators. Again 
20 runs were executed for each experiment and each time results were compared to best 
so far results. When an operator was found to enhance performance of GA optimizer it 
was adopted. The simulation results for these operators are shown in Table 6. As it is 
obvious from Table 6, each one of four domain specific operators enhance performance 
of GA optimizer and thus all four operators were adopted in final scheme. The domain 
specific operators managed to evolve best overall solution from value of 22982 for 
advanced setup down to value of 2809. The optimal solution for 2809 can be analyzed 
into two parts: (i) Hard constraints violation part which is 2000; (ii) Soft constraints 
violation part which is 809. The value 2000 for first part means that all hard constraints 
are fully satisfied at optimal solution. Similarly, value of 809 for second part means that 
all soft constraints are fully satisfied and that gaps within classrooms and teacher 
schedules are adequately minimized. The lower value of soft constraints i.e. 809 as 
compared to value of 2000 for hard constraints is attributed through treatment of measure 
of violation of soft constraints using Fuzzy Sets. 

 

The final step encodes and evaluates manual solution for similar timetable problem that 
was already available. The manual solution was evaluated through same Fitness Function 
that was also used for FGH optimizer. The comparative results of manual solution , GA 
solution [29] and FGH solution are given in Table 7, where objective value is part of 
fitness value attributed to violation of soft constraints i.e., objectives. The penalty value is 
part of fitness value attributed to hard constraints. The classroom hour gaps is total 
number of hours within classroom schedules during which classrooms are unoccupied 
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and teacher hour gaps is total number of hours within each teacher’s schedule during 
which teacher does not have class assignment. 

 

As is obvious from Table 7, FGH optimizer manages to satisfy all hard constraints. It is 
also evident that solution produced by FGH satisfies soft constraints better than manual 
solution. FGH solution scores an objective value of 809 compared to 2286 of manual 
solution and 1107 of GA solution [26]. The value of 809 corresponds to only 5 classroom 
hour gaps and only 1 teacher hour gap compared to 90 and 98 of manual solution and 7 
and 2 of GA solution [26] respectively. It seems like manual solution was outcome of 
focused effort to satisfy hard constraints, while soft constraints didn’t received much 
importance. On other hand, FGH which has been treated with fuzzy membership 
functions and GA [26] algorithms are well developed concerning both hard and soft 
constraints.  

 

The proposed FGH algorithm is implemented in Microsoft Visual C++ 6 under Windows 
XP on Intel machine having 2 GHz processor and 512 RAM. The algorithm is tested on 
data instances prepared by Socha data instances which are generated by generator written 
by Ben Paechter available on website: http://iridia.ulb.ac.be/~msampels/tt.data/. The data 
instances measure the performance of approaches related to UCTP and are prepared 
carefully to mimic real word UCTP at St. Xavier’s College, Kolkata with different size 
and supersets of constraints. The data instances are classified into three classes as small, 
medium and large with respect to parameter value for each class. Experiments are 
performed on five small data instances, five medium data instances and one large data 
instance; they were tested using 7000 iterations as mentioned to section 4.2. Time 
consumed for each instance is approximately 20 minutes for each small instance and less 
than 2 hours for each medium and large instance. As FGH is basically a GA based 
algorithm with fuzzy fitness function it is worthwhile to compare it with other GA based 
heuristic algorithms for UCTP to illustrate its effectiveness. To demonstrate the 
significance of FGH algorithm, a comparative performance of execution times is made 
with respect to seven different GA based heuristics as given in Table 8. FGH algorithm 
takes an appreciable amount of time to generate satisfactory solution in comparison to 
other GA based heuristic solutions. 

 
 

Table 5: Simulation Results for Standard Operators and Parameters 
 

Setup Mean Quality Best Quality Worst Quality 
Standard 74192  61087 97073 

1 (a) 72286  52046  90669 
1 (b) 67886 60009 75969 
2 (a) 72389 56966 82976 
2 (b) 81690 65010 93024 
3 (a) 61326 50024 75996 
3 (b) 61484 44026 77987 
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4 (a) 66282 42010 82997 
4 (b) 65090 52024 75999 
5 (a) 70095 55998 82998 
5 (b) 65887 52990 82884 
6 (a) 65888 54027 87998 
6 (b) 65186 55997 75987 
7 (a) 71665 60995 80024 
7 (b) 76882 52030 88987 
8 (a) 53490 45036 64995 
8 (b) 59680 44985 76996 

9 68479 46046 91980 
10 58278 47982 70999 

11 (a) 50265 38978 66980 
11 (b) 52269 36975 62936 
11 (c) 57696 47660 69526 
12 (a) 53277 38984 88024 
12 (b) 42036 26002 58982 

13 29782 22982 35030 
 
 
 
 
 

Table 6: Simulation Results for Domain Specific Operators  
 

Setup Mean Quality Best Quality Worst Quality 
Day Change 20886  14446  28686 
Fix Teacher 18169  12421  28684 
Fix Room 12996  9466  22989 
Fix Day 6936  2809  11130 

 
Table 7: Comparison between Manual and Fuzzy Genetic Heuristic Solution  

 
Feature Manual 

Solution 
Genetic Algorithm 

Solution [26] 
Fuzzy Genetic 

Heuristic Solution 
Fitness  2286 2599 2809 

Objective Value 2286 1107 809 
Penalty Value 0 2000 2000 

Number of Hard 
Constraints Violated  

0 0 0 

Number of Soft 
Constraints Violated  

0 0 0 

Classroom Hour Gaps 90 7 5 
Teacher Hour Gaps 98 2 1 
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Table 8: Comparison of Execution Times (in minutes) of Fuzzy Genetic Heuristic 
Solution with other GA based Heuristic techniques 

 
Datasets GA1 GA2 GA3 GA4 GA5 GA6 GA7 FGH 
Small1 11.55 15.79 16.60 17.45 14.56 16.62 18.32 19.76 
Small2 11.59 15.86 16.64 17.46 14.57 16.64 18.33 19.90 
Small3 11.62 15.96 16.66 17.47 14.59 16.66 18.34 19.86 
Small4 11.64 15.98 16.69 17.50 14.60 16.67 18.35 19.89 
Small5 11.69 15.99 16.86 17.52 14.69 16.69 18.37 19.89 

Medium1 109.96 106.90 116.99 115.90 111.30 112.30 112.28 119.07
Medium2 104.86 109.50 107.84 107.86 86.32 80.32 79.86 119.56
Medium3 110.99 - 118.30 117.99 114.37 112.37 112.16 118.66
Medium4 - 100.79 104.56 115.57 114.54 112.50 112.37 117.96
Medium5 - - 105.99 115.96 85.69 75.69 69.86 118.98

Large - - - - 116.32 119.30 119.55 119.99
 

In Table 8, the experiments are performed on different datasets viz., small, medium and 
large. In this process, the following different GA based heuristic abbreviations are used: 
GA1: Genetic Algorithm1 [16]; Genetic Algorithm2 [23]; GA3: Genetic Algorithm3 
[52]; GA4: Genetic Algorithm4 [47]; GA5: Genetic Algorithm5 [58]; GA6: Genetic 
Algorithm6 [26]; GA7: Genetic Algorithm7 [34]; FGH: Fuzzy Genetic Heuristic  

 
 

6 Conclusion 
 

In this work FGH algorithm is presented for UCTP. The technique uses an indirect 
representation featuring event allocation priorities and invokes timetable builder routine 
for constructing the complete timetable. The algorithm incorporates number of 
techniques and domain specific heuristic local search operators to enhance search 
efficiency. The non-rigid soft constraints involved in problem are basically optimization 
objectives for search algorithm. Micro GA is also incorporated in the algorithm to 
improve performance of GA by improving the Fitness evaluation, such that the entire 
search space is reduced by Crossover alone and there is rapid convergence to sub-optimal 
solution. There is an inherent degree of uncertainty involved in objectives which 
comprises of different aspects of real life data. This uncertainty is tackled by formulating 
measure of violation parameter of soft constraint in fitness function using fuzzy 
membership functions. FGH algorithm has been applied on real world UCTP for which 
manual solutions are already available. It has been shown through extensive simulation 
that incorporating certain combinatorial and domain specific operators search efficiency 
of evolutionary algorithm is significantly enhanced. It may be mentioned that a big 
population is taken for GA implementation in this work; however, the micro setting of 
the population should be at least 40 to be 50 percent of population considered. By 
comparing FGH algorithm with manual solution it is evident that the technique satisfies 
all hard constraints of problem and achieves significantly better score in satisfying soft 
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constraints and thus its performance is superior. However, algorithm is computationally 
complex when compared to other different GA based benchmark heuristics. Further, to 
verify efficiency and robustness of algorithm, it should be tested on different real world 
timetable problems. The algorithm can also be adapted to solve other UCTP as well as to 
scheduling problems.  

 
7 Future Work 
 

In the process of developing UCTP through FGH algorithm, all hard and soft constraints 
are satisfied and significant results are obtained. However, computational time required is 
appreciably large. The future work entails in the development of well known heuristics 
viz., Neuro Fuzzy Genetic or Rough Fuzzy Genetic techniques which can reduce 
underlying computational complexity such that quality of solutions is greatly enhanced.     
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