
Int. J. Advance. Soft Comput. Appl., Vol. 5, No. 1, March 2013

ISSN 2074-8523; Copyright © ICSRS Publication, 2013

www.i-csrs.org

A Review of Population-based Meta-Heuristic

Algorithm

Zahra Beheshti, Siti Mariyam Hj. Shamsuddin

Soft Computing Research Group, Faculty of Computing, Universiti Teknologi

Malaysia (UTM), Skudai, 81310 Johor, Malaysia

e-mail: bzahra2@live.utm.my

Soft Computing Research Group, Faculty of Computing, Universiti Teknologi

Malaysia (UTM), Skudai, 81310 Johor, Malaysia

e-mail: mariyam@utm.my

Abstract

 Exact optimization algorithms are not able to provide an appropriate solution

in solving optimization problems with a high-dimensional search space. In these

problems, the search space grows exponentially with the problem size therefore;

exhaustive search is not practical. Also, classical approximate optimization

methods like greedy-based algorithms make several assumptions to solve the

problems. Sometimes, the validation of these assumptions is difficult in each

problem. Hence, meta-heuristic algorithms which make few or no assumptions

about a problem and can search very large spaces of candidate solutions have

been extensively developed to solve optimization problems these days. Among

these algorithms, population-based meta-heuristic algorithms are proper for

global searches due to global exploration and local exploitation ability. In this

paper, a survey on meta-heuristic algorithms is performed and several

population-based meta-heuristics in continuous (real) and discrete (binary)

search spaces are explained in details. This covers design, main algorithm,

advantages and disadvantages of the algorithms.

 Keywords: Optimization, Meta-heuristic algorithm, Population-based meta-
heuristic Algorithm, high dimension search space, Continuous and discrete
search spaces.

Z. Beheshti et al. 2

1 Introduction

In the past decades, many optimization algorithms, including exact and

approximate algorithms, have been proposed to address optimization problems. In

the class of exact optimization algorithms, the design and implementation of

algorithms are usually based on methods such as dynamic programming,

backtracking and branch-and-bound methods [1]. However, these algorithms have

a good performance in many problems [1, 2, 3, 4, 5], they are not efficient in

solving larger scale combinatorial and highly non-linear optimization problems.

Due to the fact that the search space increases exponentially with the problem size

and exhaustive search is impractical in these problems. Also, traditional

approximate methods like greedy algorithms usually require making several

assumptions which might not be easy to validate in many situations [1]. Therefore,

a set of more adaptable and flexible algorithms are required to overcome these

limitations. Based on this motivation, several algorithms usually inspired by

natural phenomena have been proposed in the literature. Among them, some

meta-heuristic search algorithms with population-based framework have shown

satisfactory capabilities to handle high dimension optimization problems.

Artificial Immune System (AIS) [6], Genetic Algorithm (GA) [7], Ant Colony

Optimization (ACO) [8], Particle Swarm Optimization (PSO) [9, 10], Stochastic

Diffusion Search (SDS) [11], Artificial Bee Colony (ABC) [12], Intelligent Water

Drops (IWD) [13], River Formation Dynamics (RFD) [14], Gravitational Search

Algorithm (GSA) [5] and Charged System Search (CSS) [16] are in the class of

such algorithms. These algorithms and their improved scheme have shown a good

performance in the wide range of problems such as neural network training [17,

18], pattern recognition [19, 20], function optimization [21, 22], image processing

[23, 24], data mining [25, 26], combinatorial optimization problems [27, 28] and

so on.

This paper provides an overview of meta-heuristic algorithms followed by

population-based meta-heuristics. The structure of this paper is organized as: the

basic concepts of meta-heuristic algorithms and meta-heuristics classification are

described in Section 2 and Section 3 respectively. A brief review of related works

is presented in Section 4. In Section 5, several population-based meta-heuristic

algorithms in real and binary search spaces are provided in details. Finally, a

discussion and summary of this paper will be demonstrated in Section 6 and

Section 7.

2 Concept of meta-heuristic

The words of “meta” and ‘‘heuristic” are Greek where, “meta” is “higher level” or

“beyond” and heuristics means ‘‘to find”, ‘‘to know”, ‘‘to guide an investigation”

or ‘‘to discover” [29]. Heuristics [30] are methods to find good (near-) optimal

3 A Review of Population-based Meta-Heuristic

solutions in a reasonable computational cost without guaranteeing feasibility or

optimality. In other words, meta-heuristics are a set of intelligent strategies to

enhance the efficiency of heuristic procedures. Laporte and Osman [31] defined a

meta-heuristic as: “An iterative generation process which guides a subordinate

heuristic by combining intelligently different concepts for exploring and

exploiting the search space, learning strategies are used to structure information in

order to find efficiently near-optimal solutions.”

According to Voss et al. [32], a meta-heuristic is: “an iterative master process that

guides and modifies the operations of subordinate heuristics to efficiently produce

high-quality solutions. It may manipulate a complete (or incomplete) single

solution or a collection of solutions per iteration. The subordinate heuristics may

be high (or low) level procedures, or a simple local search, or just a construction

method.”

A majority of these algorithms has a stochastic behavior and mimics biological or

physical processes. Different categories have been considered to classify meta-

heuristic algorithms so far. In the next section, their classification will be

described from different viewpoints.

3 Classification of meta-heuristic algorithms

Different ways based on the selected characteristics have been proposed to

classify meta-heuristics as shown in Fig. 1 [33]. This section briefly summarizes

the most important classes including nature-inspired against non-nature inspired,

population-based against single point search, dynamic against static objective

function, single neighborhood against various neighborhood structures, and

memory usage against memory-less methods [33, 34, 35].

3.1 Nature-inspired against non-nature inspired

This class is based on the origin of algorithm. The majority of meta-heuristics are

nature-inspired algorithms such as Ant colony Optimization (ACO), Particle

Swarm Optimization (PSO) and Genetic Algorithms (GA). Also, some of them

are non-nature-inspired algorithms like Iterated Local Search (ILS) [36] and Tabu

Search (TS) [37].

3.2 Population-based against single point search

Meta-heuristics can also be classified according to the number of solutions used at

the same time. Trajectory methods, as illustrated in Fig. 2, are the algorithms

working based on a single solution at any time and encompass local search-based

meta-heuristics such as TS, ILS and Variable Neighborhood Search (VNS) [38].

Population-based algorithms perform search with multiple initial points in a

parallel style like swarm-based meta-heuristics.

Z. Beheshti et al. 4

Fig. 1 Classification of meta-heuristic algorithms [33]

Fig. 2 Trajectory-based method

5 A Review of Population-based Meta-Heuristic

Swarm-based algorithms are made up of simple particles or agents interacting

locally with each other and with their environment [39]. Each particle follows one

or several rules without any centralized structure for controlling its behavior.

Consequently, local and random interactions among the particles are led to an

intelligent global behavior. These algorithms apply two approaches to achieve a

proper performance [40]: global exploration and local exploitation.

The exploration is the potency of expanding search space, whereas the

exploitation is the ability of finding the optimum solution around a good (near-)

optimal solution. Due to insufficient knowledge about the search space in the

initial steps, more exploration should be performed by the swarm to avoid

trapping into local optima. In contrast, more exploitation is required by lapse of

steps, so that the algorithm is able to tune itself in semi-optimal points. In other

words, an appropriate trade-off between exploration and exploitation is necessary

to have an efficient search.

To realize the concepts of exploration and exploitation, particles pass three phases

inspired from nature in each step, namely, self-adaptation, cooperation and

competition. In the self-adaptation phase, each particle enhances its performance.

Particles collaborate together by transferring information in the cooperation phase

and finally, they compete to survive in the competition phase. These concepts

direct an algorithm toward finding the best solution. [37].

3.3 Dynamic against static objective function

Another characteristic which can be employed for the meta-heuristics

classification is the way of utilizing the objective function. In other words, the

objective function is kept “as it is” in the problem representation by some

algorithms while some others, such as Guided Local Search (GLS) [41], modify it

during the search. The idea behind this approach is to escape from local optima by

changing the search landscape. Therefore, the objective function is modified by

incorporating the collected information during the search process.

3.4 Various against single neighborhood structure

The majority of meta-heuristic algorithms apply one single neighborhood

structure. In other words, the fitness landscape topology does not alter in the

course of the algorithm while others, like Variable Neighborhood Search (VNS),

employ a set of neighborhood structures. This latter structure gives the possibility

to diversify the search by swapping between different fitness landscapes.

3.5 Memory usage against memory-less methods

The use of memory is one of the most important features to classify meta-

heuristics. In other words, memory usage is known as one of the fundamental

Z. Beheshti et al. 6

elements of a powerful meta-heuristic. Memory-less algorithms carry out a

Markov process, as the information which is used to determine the next action is

the current state of the search process. There are several ways of using memory.

Also, the use of short term usually is different from long term memory. The first

usually keeps track of recently performed moves, visited solutions or, in general,

decisions taken. The second is usually an accumulation of synthetic parameters

about the search.

4 Related works

Many meta-heuristic algorithms have been proposed so far as shown in Table 1.

Genetic Algorithm (GA) as a population-based meta-heuristic algorithm was

suggested by Holland [42]. In the algorithm, a population of strings called

chromosomes encodes candidate solutions for optimization problems.

Simulated Annealing (SA) is a local search meta-heuristic proposed by

Kirkpatrick et al. [43] based on the way thermodynamic systems go from one

energy level to another. In this method, each point x of the search space is a state

and the function f(x) is an internal energy of a physical system in that state. The

goal is to transfer system from random initial state to a minimum energy state.

Therefore, some neighboring states x’ of the current state x are considered at each

step and based on probabilities it is decided whether system stays in the state x or

move to state x’. Finally, these probabilities move the system to states of lower

energy until the system achieves a good state for the application.

Farmer et al. [6] introduced Artificial Immune System (AIS) simulated the

structure and function of biological immune system to solve problems. The

immune system defends the body against foreign or dangerous cells or substances

which invade it. In fact, AIS copies the method which the human body acquires

immunity using vaccination against diseases. The AIS applies the VACCINE-AIS

algorithm for identifying the best solution from a given number of anti-bodies and

antigens. In AIS, the decision points and solutions are anti-bodies and antigens in

the immune system which are employed to solve optimization problems.

Tabu Search (TS) is a meta-heuristic local search algorithm introduced by Glover

and McMillan [37] and formalized in [44, 45]. In local search, the near neighbors

of each solution are checked in order to find an improved solution. In fact, TS

applies a local search to move from the current solution x to an improved solution

x' in the neighborhood of x. This process is continued until stopping criteria is

satisfied.

Another population-based algorithm is Particle Swarm Optimization (PSO)

offered by Kennedy and Eberhart [9]. It is a global optimization algorithm which

the best solution can be represented as a point or surface in a multi-dimensional

7 A Review of Population-based Meta-Heuristic

search space. In the algorithm, particles are evaluated by their fitness values. They

move towards those particles which have better fitness values and finally obtain

the best solution.

Table 1: List of some meta-heuristic algorithms (1975-2012)

No. Year Algorithm
1. 1975 Holland introduced the Genetic Algorithm (GA).

2. 1977 Glover proposed Scatter Search (SS).

3. 1980 Smith elucidated genetic programming.

4. 1983 Kirkpatrick et al. proposed Simulated Annealing (SA).

5. 1986 Glover and McMillan offered Tabu Search (TS).

6. 1986 Farmer et al. suggested the Artificial immune system (AIS).

7. 1988 Koza registered his first patent on genetic programming.

8. 1989 Evolver provided the first optimization software using the GA.

9. 1989 Moscato presented Memetic Algorithm.

10. 1992 Dorigo proposed the Ant Colony Algorithm (ACO).

11. 1993 Fonseca and Fleming provided Multi-Objective GA (MOGA).

12. 1994 Battiti and Tecchiolli introduced Reactive Search Optimization (RSO)

principles for the online self-tuning of heuristics.

13. 1995 Kennedy and Eberhart proposed Particle Swarm Optimization (PSO).

14. 1997 Storn and Price suggested Differential Evolution (DE).

15. 1997 Rubinstein presented the Cross Entropy Method (CEM).

16. 1999 Taillard and Voss proposed POPMUSIC.

17. 2001 Geem et al. provided Harmony Search (HS).

18. 2001 Hanseth and Aanestad offered Bootstrap Algorithm (BA).

19. 2004 Nakrani and Tovey presented Bees Optimization (BO).

20. 2005 Krishnanand and Ghose introduced Glowworm Swarm Optimization

(GSO).

21. 2005 Karaboga proposed Artificial Bee Colony Algorithm (ABC).

22. 2006 Haddad et al. suggested Honey-bee Mating Optimization (HMO).

23. 2007 Hamed Shah-Hosseini offered Intelligent Water Drops (IWD).

24. 2007 Atashpaz-Gargari and Lucas introduced Imperialist Competitive

Algorithm (ICA).

25. 2008 Yang presented Firefly Algorithm (FA).

26. 2008 Mucherino and Seref suggested Monkey Search (MS).

27. 2009 Husseinzadeh- Kashan provided League Championship Algorithm

(LCA).

28. 2009 Rashedi et al. introduced Gravitational Search Algorithm (GSA)

29. 2009 Yang and Deb offered Cuckoo Search (CS).

30. 2010 Yang developed Bat Algorithm (BA).

31. 2011 Shah-Hosseini introduced the Galaxy-based Search Algorithm (GbSA).
32. 2011 Tamura and Yasuda designed Spiral Optimization (SO).

33. 2011 Rao et al. presented Teaching-Learning-Based Optimization (TLBO)

algorithm.

34. 2012 Gandomi and Alavi proposed the Krill Herd (KH) Algorithm.

35. 2012 Çivicioglu introduced Differential Search Algorithm (DSA).

Z. Beheshti et al. 8

Ant Colony Optimization (ACO) [8] algorithm models the behavior of ants

foraging and is useful for problems which require finding the shortest path as a

goal. In real world, when ants explore their environment, it lays down the

pheromones to direct each other toward resources. ACO also simulates this

method and each ant records similarly its position so that more ants locate better

solutions in later iterations. This trend continues until the best path is found.

Artificial Bee Colony (ABC) algorithm is another population-based presented by

Karaboga [12]. ABC algorithm mimics the intelligent behavior of honey bees and

applies three phases to find the best solution: employed bee, onlooker bee and

scout bee phases. Employed and onlooker bees have local searches around the

neighborhood and choose food based on the deterministic and probabilistic

selection in their phases respectively. They select food sources based on their

experience and their nest mates and modify their positions. In Scout phase, bees

(scouts) fly and choose the food sources randomly without using experience. If

the nectar amount of a new source is higher than that of the previous one in their

memory, they memorize the new position and forget the previous one. Therefore,

ABC balances exploration and exploitation process with local and global search

methods in employed, onlooker and scouts phases and obtains the best solution.

Shah-Hosseini [13] proposed Intelligent Water Drops (IWD) algorithm inspired

by the behavior of water drops in natural rivers. In the rivers, water drops find

almost optimum paths to their destination through actions and reactions occurring

among them and their riverbeds. The IWD algorithm simulates this trend and uses

the constructive approach to find the optimum solution in a problem. Each

artificial water drop constructs a solution (path) by traversing in the search space

of the problem and modifying its environment. Among all these paths, the

optimum or near optimum path is chosen by the algorithm.

Atashpaz-Gargari and Lucas [46] introduced Imperialist Competitive Algorithm

(ICA). It is a socio-politically global search strategy to address different

optimization problems. The algorithm achieves the best solution based on a

competition among empires. The best solution is an imperialist with the best

power.

Another population-based algorithm is River Formation Dynamics (RFD) [14]

which is nature-inspired optimization and can be considered as a gradient version

of ACO. The algorithm copies the behavior of water to form rivers. Waters shape

the rivers by eroding the ground and depositing sediments. The altitudes of places

are dynamically changed and decreasing gradients are created by transforming

water in the environment. The gradients are followed by subsequent drops to

make new gradients, emphasizing the best ones. By this method, good solutions

are obtained in the form of decreasing altitudes. Due to the gradient orientation of

RFD, the algorithm is proper to solve problems which use graphs and trees.

9 A Review of Population-based Meta-Heuristic

Gravitational Search Algorithm (GSA) was proposed based on the Newtonian

gravity law and mass interactions by Rashedi et al. [15]. In the algorithm, objects

in real world are considered as agents and their performance is measured by their

masses which depend on fitness function values. The position of each agent in the

search space shows a problem solution. The heaviest mass presents the optimum

solution in the search space. By lapse of time, masses are attracted by the heaviest

mass and are converged the best solution.

Also, Charged System Search (CSS) [16] was developed based on the Newtonian

laws from mechanics and the governing Coulomb and Gauss laws from

electrostatics. The algorithm is multi-agent and each agent is called Charged

Particle (CP). Each CP has an electric force and affects other CPs according to the

Coulomb and Gauss laws. This force gives acceleration to CP and the velocity of

each CP changes with time. The motion laws and the resultant forces determine

the new position (new solution) of the CPs. These positions are evaluated and

replaced with previous ones if these positions are better. The trend continues until

the maximum number of iterations achieves and obtains the best result to that

extent.

As the scope of this study is meta-heuristic population-based algorithms, in the

next section, some of the algorithms are explained in details for real and binary

search spaces.

5 Population-based meta-heuristic algorithms

This section describes GA and PSO as older, GSA and ICA as newer population-

based algorithms in continuous and discrete search spaces although ICA has been

defined only on real search space.

5.1 Population-based meta-heuristic algorithms in real search
space

The majority of meta-heuristic algorithms have been designed for real valued

vectors in search spaces. In this section, GA, PSO, ICA and GSA are elucidated in

the real search space, although GA is applied for both real and binary search space.

5.1.1 Genetic Algorithm (GA)

GA simulates the biological evolution process of chromosomes using selection,

crossover and mutation operators. Chromosomes present problem solutions and

are evaluated based on their fitness function to select parents. Selection is an

important process for choosing parents to reproduce new population and can

affect the convergence of GA. The convergence speed of different selection

schemes was first studied by Goldberg and Deb [47]. The commonly selection

Z. Beheshti et al. 10

methods are proportionate reproduction, tournament selection, ranking selection

and Genitor or steady state selection.

Roulette Wheel Selection or stochastic sampling with replacement is the simplest

method in proportionate reproduction. In this technique, parents are selected based

on their fitness. It means that chromosomes with better fitness have more chance

to be chosen as demonstrated in Fig. 3. For each chromosome i, a probability is

calculated as:





N
j j

i
i

f

f
p

1

, (1)

Where, fi represents the fitness of chromosome i and N is population size.

Then, an ascending array is made according to the probabilities of the

chromosomes. N random numbers are generated in the range 0 to  
N
j jf1

 and

chromosomes are chosen based on their probabilities of selection. As

demonstrated in Fig. 3, Chromosome1 has more chance than others to be selected.

However, when the difference of the fitness values is very much, the method is

inefficient. For instance, if the best chromosome fitness is 95% of the roulette

wheel, the other chromosomes will have a few chances to be chosen.

Fig. 3 Roulette wheel selections

11 A Review of Population-based Meta-Heuristic

In Tournament Selection, a number of chromosomes are randomly selected from

the population and the two best are chosen as parents. The parents produce

offspring and this process is often repeated until reaching a tournament size. The

tournament size usually depends on the population size and takes values ranging

from 2 to population size.

In the method of ranking selection, each chromosome has a rank in population. It

means that the worst fitness will have fitness 1and the best will have fitness N

(population size). After this, all the chromosomes have a chance to be chosen. In

this method the best chromosomes are not considerably different from others

hence, it leads to slow convergence rate.

The main idea of Genitor or steady state selection is to survive the big part of

chromosomes in next generation. Therefore, a few chromosomes with high fitness

are chosen for creating a new offspring in each generation. Then, some

chromosomes with low fitness are deleted and the new offspring is replaced in

their place. The rest of population survives to generate new generation.

Other operators in GA are Crossover and Mutation. In Crossover, some parts of

two chromosomes are exchanged together. The crossover performs using several

methods such as one, two and uniform crossover as demonstrated in Fig. 4.

Therefore, one, two and several parts of parents’ chromosomes are exchanged in

one, two and uniform crossover respectively.

In Mutation, some parts of chromosomes randomly change in order to have better

performance and escape from local optima. It is possible to lose the best

chromosomes when new chromosomes are created by crossover and mutation

operators.

Elitism is a method which copies the best chromosome (or a few best

chromosomes) to new population and the rest is created by the mentioned

methods. Therefore, this method increases the performance of GA, because it

avoids losing the best-found solution [48]. The above steps have been illustrated

in Fig. 5.

Although GA has been extensively used in various problems, it suffers from some

disadvantages [49, 50, 51] such as:

1. Using complex operators for selection and cross over.

2. Unpredicted results.

3. Premature convergence rate.

4. Trapping into local optima.

5. Taking long run-time.

6. Weak local search.

Z. Beheshti et al. 12

7. .Difficult encoding scheme

Fig. 4 GA crossover

Step 1: Start.

Step 2: Create first generation of chromosomes.

Step 3: Define Parameters and fitness function.

Step 4: Calculate the fitness of each individual chromosome.

Step 5: Choose the chromosomes by Elitism method.

Step 6: Select a pair of chromosomes as parents.

Step 7: Perform Crossover and Mutation to generate new chromosomes.

Step 8: Combine the new chromosomes and the chromosomes of Elitism Set in

the new population (the next generation).

Step 9: Repeat Step 4 to Step 8 until reaching termination criteria.

Step 10: Return best solution.

Fig. 5 GA pseudo code

13 A Review of Population-based Meta-Heuristic

5.1.2 Particle Swarm Optimization (PSO) in real search space

PSO is a swarm-based meta-heuristic algorithm which simulates the flock of birds

or insects motion in order to find the best solution. In the algorithm, the birds or

insects called particles and are initialized by random positions and velocities [9,

10]. Each particle is described by a group of vectors denoted as (


iPiViX ,,) in a

d–dimensional search space, where,


iX and


iV are the position and velocity of the

ith particle defined as:

  NiforxxxX idiii ,...,2,1,...,, 21 


. (2)

  NiforvvvV idiii ,...,2,1,...,, 21 


. (3)



iP is the personal best position found by the ith particle:

  NiforpppP idiii ,...,2,1,...,, 21 


. (4)

Also, the best position achieved by the entire population (


gP) is computed to

update the particle velocity:

 pppPg gdgg ,...,, 21


. (5)

From


iP and


gP , the next velocity and position of ith particle are updated by Eq.

(6) and Eq. (7):

               txtpCtxtpCtvtwtv idgdidididid randrand  211 , (6)

     11  tvtxtx ididid , (7)

Where, vid (t+1) and vid (t) are the next and current velocity of ith particle

respectively. w is inertia weight, C1 and C2 are acceleration coefficients, rand is

uniformly random number in the interval of [0, 1] and N is the number of particles.

xid (t+1) and xid (t) show the next and current position of ith particle.

In Eq. (6), the second and the third term are called cognition and social term

respectively. Also, |vid|<vmax is considered and vmax is set to a constant based

Z. Beheshti et al. 14

on the bounds of solution space by users. A larger value of w encourages a global

exploration (searching new areas) while a smaller inertia weight facilitates a local

exploitation [52]. It is usually decreased from 0.9 to 0.4 [10, 52].

In PSO algorithm, two models for choosing

Pg are considered known as gbest (or

global topology) and lbest (or local topology) models. In global model, the

position of each particle is influenced by the best-fitness particle of entire

population in the search space whereas in the local model, each particle is affected

by the best-fitness particle chosen from its neighborhood. According to Bratton

and Kennedy [53], the lbest model can return better results than the gbest model

in many problems however; it might have lower convergence rate than gbest

model. The steps of PSO are shown in the Fig. 6.

Although PSO is easy to implement, it may face up to the slow convergence rate,

parameter selection problem and easily get trapped in a local optimum due to its

poor exploration when solving complex multimodal problems [54, 55, 56]. If a

particle falls into a local optimum, sometimes it cannot get rid of itself from the

position. In other words, if

Pg obtained by the population is a local optimum and

the current position and the personal best position of particle i are in the local

optimum, the second and third term of Eq. (6) tend toward zero, also w is linearly

decreasing to near zero. Consequently, the next velocity of particle i tends toward

zero and its next position in Eq. (7) cannot change and the particle remains in the

local optimum. Therefore, variant PSO algorithms have been proposed to improve

the performance of PSO and to overcome these limitations.

Step 1: Start.

Step 2: Initialize the velocities and positions of population randomly.

Step 3: Evaluate fitness values of particles.

Step 4: Update Pi if particle fitness value iis better than particle best fitness value

i , for i = 1, .. ., N.

Step 5: Update Pg if particle fitness value i is better than global best fitness value,

for i = 1, . . ., N.

Step 6: Update the next velocity of particles.

Step 7: Update the next position of particles.

Step 8: Repeat steps 3 to 7 until the stop criterion is reached.

Step 9: Return best solution.

Fig. 6 PSO pseudo code

15 A Review of Population-based Meta-Heuristic

PSO is one of the most popular optimizer which has been widely applied in

solving optimization problem. Hence, the enhancement of performance and

theoretical studies of the algorithm have become attractive. Convergence analysis

and stability studies have been reported in [57, 58, 59, 60, 61]. Also, some

research on the performance of PSO has been done in terms of topological

structures, parameter studies and combination with auxiliary operations [62, 63].

In topological structures, Kennedy and Mendes proposed a ring topological

structure PSO (LPSO) [64] and a Von Neumann topological structure PSO

(VPSO) [65] to enhance the performance in solving multimodal problems. Also,

Dynamic Multi-Swarm PSO (DMS-PSO) introduced by Liang and Suganthan

[66] to improve the topological structure in dynamic way. This new neighborhood

structure has two important characters: Small sized swarms and randomly

regrouping schedule. Since the small sized swarms are searching using their own

best historical information, they are easy to converge to a local optimum because

of PSO’s convergence property. In this case, if the neighborhood structures are

kept unchanged, no information is exchanged among the swarms. To avoid this

situation, a randomized regrouping schedule is considered and the good

information obtained by each swarm is exchanged among the swarms. The new

neighborhood structure has better performance on complex multimodal problems

than classical neighborhood structure. Other topology structures have been also

proposed to improve the performance of PSO. For example, Fully Informed

particle swarm (FIPS) algorithm [67] used the information of the entire

neighborhood to influence the flying velocity.

In parameter studies, much research has been done on inertia weight w and

acceleration coefficients C1 and C2. Shi and Eberhart [10, 52] suggested that the

inertia weight w in Eq. (6) is linearly decreased by the iterative generations as Eq.

(8):

Maxiter

iter
wwww)(minmaxmax  (8)

Where, iter is the current generation and Maxiter is maximum generations. The

wmax and wmin are usually set to 0.9 and 0.4 respectively. Moreover, other values

of w have been proposed to improve the searching ability of PSO. A fuzzy

adaptive w was introduced and a random version setting w to

2/)1,0(5.0 random was experimented for dynamic system optimization [68, 69].

Also, a constriction factor [57] was introduced based on Eq. (9) and the next

velocity was computed according to Eq. (11):

Z. Beheshti et al. 16





42

2

2 

 , (9)

1.421  CC , (10)

              txtpCtxtpCtvtv idgdidididid randrand  211  , (11)

Where, C1 and C2 are both set to 2.05 and  is mathematically equivalent to w, as

Eberhart and Shi [70] pointed out.

The experiment results have illustrated that both acceleration coefficients C1 and

C2 are essential to the success of PSO. Kennedy and Eberhart [9] offered a fixed

value of 2.0, and this configuration has been adopted by many other researchers.

Ratnaweera et al. [71] proposed self-organizing Hierarchical Particle Swarm

Optimizer with Time-Varying Acceleration Coefficients (HPSO-TVAC)

algorithm which used linearly time-varying acceleration coefficients, where a

larger C1 and a smaller C2 were set at the beginning and were gradually reversed

during the search. Therefore, particles allow moving around the search space

instead of moving toward the population best at the beginning. The w in HPSO-

TVAC is used as Eq. (8) and C1 and C2 are computed as:

2,1,)( jC
Maxiter

iter
CCC jijijfj (12)

Where, Cjf and Cji are the final and initial values of acceleration coefficients

which are changed from 2.5 to 0.5 for C1 and .from 0.5 to 2.5 for C2.

Comprehensive Learning PSO (CLPSO) [54] is another PSO algorithm to

improve the diversity of the swarm by encouraging each particle to learn from

different particles on different dimensions. In the algorithm, each particle velocity

can be updated by personal best position and other particles’ best position. Hence,

the velocity of each particle in CLPSO is given by:

      txtptvtwtv idddidid f i
randC 

),(
)()(1 , (13)

Where,   Niforffff
idiii ,...,2,1,...,,

21


defines which particles’ best

position the particle i should follow. p
ddf i),(

 can be the corresponding dimension

of any particle’s best position including its own best position and the decision

depends on probability Pc, referred to as the learning probability, which can take

17 A Review of Population-based Meta-Heuristic

different values for different particles. For each dimension of particle i, a random

number is generated. Hence, a tournament selection procedure has been suggested

to choose randomly two particles and then select one with the best fitness as the

exemplar to learn from for that dimension. CLPSO has only one acceleration

coefficient C which is normally set to 1.494 and the inertia weight value is

changed from 0.9 to 0.4.

An Adaptive PSO (APSO) was proposed by Zhan et al. [55]. In this algorithm, an

evolutionary factor f is defined and computed with a fuzzy classification method

to design effective parameter and to improve the speed of solving optimization

problems. Hence, w changes based on a sigmoid mapping w(f) as shown in Eq.

(14). The large f will benefit for the global search and convergence state is

detected by small f.

]9.0,4.0[

]1,0[
5.11

1
)(

6.2








f
e

fw
f

. (14)

Moreover, acceleration coefficients are modified by increasing C1 and decreasing

C2 in where the maximum increment or decrement between two generations is

bounded by:

    2,11  itCtC ii  , (15)

Where,  is termed acceleration rate in interval [3.0, 4.0]. If the sum of C1 and C2

is larger than 4.0, then both C1 and C2 are normalized to:

2,1,0.4
21




 i
CC

C
C

i
i (16)

Another term in APSO is an Elitist Learning Strategy (ELS) to help

Pg for

jumping out of local optimal regions when the search is identified to be in a

convergence state. If another better region is found for

Pg , then the rest of the

swarm will follow to jump out and converge to the new region.

In addition to the mentioned algorithms, another active research trend in PSO is

hybrid PSO with other evolutionary paradigms. Angeline [72] introduced a

selection operation for PSO similar to GA. Also, hybridization of GA and PSO

has been applied [73] for recurrent artificial neural network design.

Z. Beheshti et al. 18

Zhan et al. [74] introduced Orthogonal Learning Particle Swarm Optimization

algorithm (OLPSO). The OL strategy could guide particles to discover useful

information from the personal best position and its neighborhood’s best position

in order to fly in better directions. In another study, Gao et al. [56] used PSO with

chaotic opposition-based population initialization and stochastic search technique

to solve complex multimodal problems. The algorithm called CSPSO found new

solutions in the neighborhoods of the previous best positions in order to escape

from local optima in multimodal functions.

In other studies, Beheshti et al. proposed Median-oriented Particle Swarm

Optimization (MPSO) [21] and Centripetal Accelerated Particle Swarm

Optimization (CAPSO) [22] based on the improved scheme of PSO and

Newtonian’s motion laws. The algorithms do not require any specific-algorithm

parameters and have been introduced for both local and global topology. Also,

CAPSO has been proposed for both real and binary search spaces.

Although many extended PSO algorithms have been presented so far, the

performance enhancement of PSO is an open problem because of its simple

structure of PSO and easy to use.

5.1.3 Imperialist Competitive Algorithm (ICA)

ICA is a global search optimization algorithm inspired by imperialistic

competition [46]. The algorithm is population-based including countries and

imperialists. Each individual of the population is called a country. Some of the

best countries with the best cost are chosen as imperialist states and others named

colonies are divided among the imperialists according to their costs. Empires are

formed by imperialist states and their colonies. After forming the empires,

imperialistic competition is started among them to collapse weak empires and to

remain the most powerful empire.

To divide the colonies among the imperialists, the cost and power of each

imperialist are normalized and initial colonies are allocated to the empires as Eq.

(17) to Eq. (19):

 ccC i
i

nn max , (17)







N imp

i
i

n
n

C

C
p

1

, (18)

 NproundCN colnn ..  , (19)

19 A Review of Population-based Meta-Heuristic

Where, cn is the cost of the nth imperialist and Cn and pn are the normalized cost

and power of the imperialist respectively. Also, N.Cn is the initial number of

colonies related to the nth empire and Ncol is the total number of initial colonies.

To form the nth empire, the N.Cn of the colonies are randomly selected and

allocated to the nth imperialist. In real world, the imperialist states try to make

their colonies as part of themselves. This process, called assimilation, is modelled

by moving all of the colonies toward the imperialist as illustrated in the Fig. 7. In

this Figure, θ and x are random angle and number with uniform distribution also;

d is the distance between the imperialist and colony.

 dUx ,0~ , (20)

  ,~ U , (21)

Where,  ,  are parameters which cause colonies to move their relevant

imperialist in a randomly deviated direction.

Fig. 7 Movement of colonies toward their relevant imperialist

While a colony moves toward an imperialist, it might achieve a better position

than the imperialist. In this case, the colony and the imperialist change their

positions with each other. Also, it is possible that a revolution takes place among

colonies which changes the power or organizational structures of empire. In ICA,

revolution operator alters the colony position and revolution rate shows the

percentage of colonies which will randomly change their position.

Finally, empires compete together in order to possess and control other empires’

colonies as shown in Fig. 8. A colony of the weakest empire is selected and the

possession probability of each empire, Pp, is computed as Eq. (23). The

Z. Beheshti et al. 20

normalized total cost of an empire, N.T.Cn,, is acquired by Eq. (22) and used to

obtain the empire possession probability.

 CT i
i

CnTCnTN .max...  . (22)







N

n

impn

i

CTN i

CTN
p p

1

..

..
. (23)

Fig. 8 Imperialistic competition

Vector P is formed in order to divide the mentioned colonies among empires:









 pppp pppp

Nimp

P ,...,,,
321

. (24)

Vector R with the same size as P whose elements are uniformly distributed

random numbers is created:

 
 1,0,...,,,

,...,,,

321

321

UN

N

rrrr

rrrr

imp

imp
R




. (25)

21 A Review of Population-based Meta-Heuristic

Vector D is formed so that the mentioned colony (colonies) is given to an empire

whose relevant index in D is maximized.

 DDDDRPD N imp
,...,,, 321 . (26)

According to vector D, the process of choosing an empire is like the roulette

wheel in GA. However, this method is faster because the selection is based on

probabilities values.

The competition affects the power of empires and an empire power will be weaker

or stronger. Therefore, all colonies of the weak empire are owned by more

powerful empires and the weaker one is eliminated. The total power (cost) of an

empire is modelled by adding the power of imperialist country (cost) and a

percentage of mean power of its colonies (colonies costs) as follows:

    empireofcoloniesCostmeanimprialistCostCT nnn . , (27)

Where, T.Cn is the total cost of the nth empire and ξ is a positive small number.

The competition will be continued until remaining one empire or reaching

determined maximum iteration. The above steps have been summarized in Fig. 9.

Step 1: Start.

Step 2: Select some random points on the function and initialize the empires.

Step 3: Move the colonies toward their relevant imperialist (Assimilation).

Step 4: Randomly change the position of some colonies (Revolution).

Step 5: If there is a colony in an empire which has lower cost than the

imperialist, exchange the positions of that colony and the imperialist.

Step 6: Unite the similar empires.

Step 7: Compute the total cost of all empires.

Step 8: Pick the weakest colony (colonies) from the weakest empires and give it

(them) to one of the empires (Imperialistic competition).

Step 9: Eliminate the powerless empires.

Step 10: If stop conditions satisfied, stop, if not go to Step 3.

Fig. 9 ICA pseudo code

Although ICA has shown good performance in many problems [75, 76, 77], it

faces some drawbacks which cause the use of the algorithm to be difficult:

Z. Beheshti et al. 22

1. Using many equations and complex operators.

2. Long computational time.

3. Tuning many parameters.

4. Design only for continuous (real) search space.

5.1.4 Gravitational Search Algorithm (GSA) in real search space

GSA [15] is a meta-heuristic algorithm based on the Newtonian gravity and

motion laws. According to the gravity law, objects attract each other by gravity

force [78]. This force depends directly on the product of both objects masses and

inversely proportional to the square of the distance between them. In GSA, the

objects of real world are considered as agents and their masses depend on fitness

function values. The position of each agent in the search space shows a problem

solution. The heaviest mass presents an optimum solution in the search space. By

lapse of time, masses are attracted by the heaviest mass and are converged to the

best solution. Based on this law, GSA defines a system with N agents in a d-

dimensional search space. The position of the ith agent is shown as:

  NiforxxxX idiii ,...,2,1,...,, 21 


. (28)

Where, xid presents the position of ith agent in the dth dimension.

At the beginning, these positions are initialized randomly. Then, the gravity force

of mass j on mass i at specific time t is computed as follows:

   
   

 
    txtx

tR

tMtM
tGtF idjd

ij

ji
dij 







, , (29)

Where, Mi and Mj are the masses of agent i and agent j respectively.  is a small

constant. Rij (t) is the Euclidean distance between probe i and j at time t:

     txtxtR jiij ,
2

 . (30)

Also, G(t) is gravitational constant initialized at the beginning and will be reduced

with time t to control the search accuracy. G is a function with the initial value of

G
0
:

   tGGtG ,0 . (31)

In the Eq. (29), Mi (t) is calculated as Eq. (33).

23 A Review of Population-based Meta-Heuristic

 
   

   tworsttbest

tworsttfit
tm

i
i




 , (32)

 
 

 



N
j j

i
i

tm

tm
tM

1

, (33)

Where, fiti (t) is the fitness value of agent i at time t. Also, best(t) and worst(t) are

the best and the worst values of fitness functions at time t.

The total force acting on agent i at time t in dimension d is considered as:

    


N
ijkbestj j dijid tFrandtF , ,

, (34)

Where, randj is a random number in the range of [0, 1]. Kbest is the set of first K

agents with the best fitness value and biggest mass. At the beginning, Kbest is

initialized by K0 and linearly reduced during the running time of algorithm.

Regarding the motion law, the force gives acceleration to the agent i:

 
 
 tM

tF
ta

i

id
id  . (35)

This acceleration moves the agent from a position to another position. Hence, the

next velocity of agent i in dimension d is computed as the sum of its current

velocity and its acceleration:

     tarandtvtv idiidid 1 . (36)

Also, the next position is considered as Eq. (37):

     11  tvtxtx ididid , (37)

Where, vid (t+1) and xid (t) are the next velocity and the current position of agent

i in dimension d.

Fig. 10 shows the pseudo code of GSA. As seen, algorithm is initialized randomly

and each agent is evaluated based on its fitness value. After computing the total

force and acceleration, the velocity and position each agent are updated. These

steps will be continued until stopping criteria is met and the best solution is

returned by the algorithm.

Z. Beheshti et al. 24

Similar to other meta-heuristic algorithms, GSA also has some weaknesses such

as having complex operators and taking long computational time.

Step 1: Start.

Step 2: Randomized initialization.

Step 3: Fitness evaluation of agents.

Step 4: Update G(t), best(t), worst(t) and Mi(t) for i = 1,2,...,N.

Step 5: Calculation of the total force in different directions.

Step 6: Calculation of acceleration and velocity.

Step 7: Updating agents’ position.

Step 8: Repeat steps 3 to 7 until the stop criterion is reached.

Step 9: Return best solution.

Fig. 10 GSA pseudo code

5.2 Population-based meta-heuristic algorithms in binary
search space

The binary search space can be considered as a hypercube which a particle or an

agent can move to nearer and farther its corners by flipping various numbers of

the bits [79].

Each dimension has only a binary value of ‘0’ or ‘1’. Therefore, the particle

velocity can be considered by the number of bits changed per iteration, or the

Hamming distance between the particle at time t and t+l. Consequently, updating

the particle position happens when a switching between ‘0’ and ‘1’ values occurs.

Based on the mentioned rules, the binary versions of PSO and GSA have been

proposed by Kennedy and Eberhart [79] and Rashedi et al. [80] respectively. In

the next subsections, an overview of these algorithms is briefly represented to

provide an appropriate background of binary search space.

5.2.1 PSO in binary search space (BPSO)

BPSO operates on discrete binary variables, therefore, the main difference

between binary PSO and PSO is that the particle position has two values ‘0’ or ‘1’.

Hence, the velocity of particle in BPSO is calculated as PSO algorithm (Eq. (6))

and is transferred into a probability function in the interval of [0, 1] in order to

update the particle position as shown in Eq. (38) and Eq. (39):

  
 e

tvS
tv

id
id


1

1
1

1
, (38)

25 A Review of Population-based Meta-Heuristic

    

  Nifortxelse

txthentvSrandif

id

idid

,...,2,101

111




, (39)

Where,  vvvV idiii ,...,, 21


 and  xxxX idiii ,...,, 21


are the velocity and

position of ith particle respectively, and N is the number of particles. For better

convergence, |vid|<vmax is considered with vmax = 6.

Although BPSO has been applied in different discrete problems [81, 82, 83], its

convergence rate is not good in many applications [84].

5.2.2 GSA in binary search space (BGSA)

In binary mode of GSA [80], updating the force, acceleration and velocity are

similar to the GSA algorithm (Eq. (29) to Eq. (36)). Also, Rij (t) in the Eq. (30) is

computed as hamming distance between two agents i and j, and G can be

considered as a linear decreasing function:

  









T

t
GtG 10 , (40)

Where, G0 is a constant value, t and T are current iteration and the total number of

iteration respectively.

Moreover, the value of position is switched between ‘0’ and ‘1’ based on the

velocity. Therefore, a probability function is defined to map the value of velocity

to the range of [0, 1]. In other words, BGSA modifies the velocity according to Eq.

(36) and the new position changes to either ‘0’ or ‘1’ based on the given

probability of function as demonstrated in Eq.(41) and Eq. (42):

     1tanh1  tvtvS idid , (41)

       

    Nifortxtxelse

txcomplementtxthentvSrandif

idid

ididid

,...,2,11

11





, (42)

Similar to BPSO, in this context, |vid|<vmax and vmax =6 are considered.

Although the experiments of meta-heuristic algorithms have shown promising

results and many researchers have tried to improve the performance of these

algorithms in optimization problems [85, 86, 87, 88, 89], more research is still

needed to overcome the disadvantages of these algorithms and to enhance their

efficiency.

Z. Beheshti et al. 26

6 Discussion

Exact optimization algorithms are not efficient in solving large scale

combinatorial and multimodal problems. In these problems, exhaustive search for

the algorithms is impractical since the search space develops exponentially with

the problem size. Hence, many researchers have applied meta-heuristic algorithms

to solve the problems. These algorithms have many advantages to name a few:

1. They are robust and can adapt solutions with changing conditions and

environment.

2. They can be applied in solving complex multimodal problems.

3. They may incorporate mechanisms to avoid getting trapped in local

optima.

4. They are not problem-specific algorithm.

5. These algorithms are able to find promising regions in a reasonable

time due to exploration and exploitation ability.

6. They can be easily employed in parallel processing.

Although the mentioned algorithms have obtained satisfactory results in various

fields, they do not guarantee an optimal solution is ever found also they have

some unavoidable disadvantages.

For instance, GA has the inherent drawbacks of prematurity convergence and

unpredictable results. Also; it uses complex functions in selection and crossover

operators and sometimes, the encoding scheme is difficult. PSO suffers from

trapping into local optima and slow convergence speed, whereas GSA and ICA

take long computational time to achieve the results. Furthermore, some of these

algorithms have several parameters to tune and often parameters setting is a

challenge for various optimization problems. Another noteworthy point is that

many problems are expressed in a binary representation. In other words, some

solutions are encoded binary form or some problems are binary in nature.

Nevertheless, some meta-heuristic algorithms are designed for only continuous

(real) or discrete (binary) search space and sometimes, they have good

performance only for one of the search spaces. For example, ICA and the original

of ACO have been designed for continuous and discrete search space respectively.

Also, binary PSO has some inherent disadvantages such as poor convergence rate

and failure to achieve desired results which bring about a decrease in performance

of algorithm in the binary search space. Generally, the main disadvantages of

using meta-heuristics are summarized as: trapping into local optima, slow

convergence speed, long computational time, tuning many parameters, difficult

encoding scheme and having good performance only in real or binary search

spaces. Hence, the performance enhancement of previous meta-heuristics or even

27 A Review of Population-based Meta-Heuristic

introduction of new ones seems to be necessary. Table 2 provides the strengths

and weaknesses of some well-known meta-heuristic algorithms.

Table 2: Advantages and disadvantages of some meta-heuristic algorithms
Algorithm Advantages Disadvantages

GA

[49, 50 , 51]

The ability of:

1. Solving different kinds of

optimization problems

2. Finding a global best solution

in many problems

3. Easy to combining with other

algorithms

4. Design for real and binary

search space

1. Slow convergence rate

2. Finding sub-optimal solution

3. Unpredictable results

4. Dependency of the crossover

and mutation rates on the

stability and convergence.

5. Weak local search

6. Difficult encoding scheme

AIS

[51]

1. It explores new search areas

2. Free of local optima

3. It is data driven self-adaptive

methods.

1. Finding sub-optimal solution

rather than the exact optimum

solution

2. Too many parameter setting

SA

[90, 91]

1. Low computational time

2. Free of local optima

3. Easy for implementation

4. Convergent property

Dependency of the solution

quality on:

1. Maximum iteration number of

the inner loop (cooling

schedule)

2. Initial temperature

ACO

[92, 93]

1. Scalability, robustness and

flexibility in dynamic

environments

2. Proper for graph-based

problems

1. No easy to code.

2. Using trial and errors to

parameters initializations

3. The original algorithm has

been design for discrete search

space

4. Difficult theoretical analysis

PSO

[39, 54, 56, 94]

1. Simple structure

2. Easy to implement

3. Fast and cheap

4. Having few parameters to

adjust

5. Efficient global search

approach

6. Less dependent on initial

points

1. Weak local search

2. Slow convergence rate and

trapping into local optima

when solving complex

multimodal problems

ICA

1. Implementation of ICA code

by author

2. Compatible in different

problems

1. Using many equations and

complex operators

2. Long computational time

3. Tuning many parameters

4. Design only for continuous

(real) search space.

GSA
1. Implementation of GSA and

BGSA code by author
1. Using complex operators

2. Long computational time

Z. Beheshti et al. 28

2. Compatible in different

problems

7 Conclusion

In this paper, we have presented and compared most important meta-heuristic

algorithms. In the algorithms, several techniques have been considered to improve

the performance of meta-heuristics. Meanwhile, none of meta-heuristic algorithms

are able to present a higher performance than others in solving all problems. Also,

existing algorithms suffer from some drawbacks such as slow convergences rate,

trapping into local optima, having complex operators, long computational time,

need to tune many parameters and design for only real or binary search space.

Hence, proposing new meta-heuristic algorithms to minimizing the disadvantages

is an open problem.

ACKNOWLEDGEMENTS

The authors would like to thank Soft Computing Research Group (SCRG),

Universiti Teknologi Malaysia (UTM), Johor Bahru Malaysia, for the support in

making this study a success.

References

[1] Neapolitan, R., Naimipour K., Foundations of Algorithms using C++ Pseudo

code (3rd

ed.), Jones and Bartlett, (2004).

[2] Jansson, C., Knoppel, O., “A branch and bound algorithm for bound

constrained optimization problems without derivatives”, Journal of Global

Optimization, Vol. 7, (1995), pp. 297-331.

[3] Toroslu, I. H., Cosar, A. “Dynamic programming solution for multiple query

optimization problem”, Information Processing Letters, Vol. 92, (2004), pp.

149–155.

[4] Balev, S., Yanev, N., Fréville, A., Andonov, R., “A dynamic programming

based reduction procedure for the multidimensional 0–1 knapsack problem”,

European Journal of Operations Research, Vol. 186, No. 1, (2008), pp. 63-76.

[5] Marti, R., Gallego, M., Duarte, A., “A branch and bound algorithm for the

maximum diversity problem”, European Journal of Operations Research, Vol.

200, (2010), pp. 36–44.

[6] Farmer, J. D., Packard, N. H., Perelson, A. S., “The immune system,

adaptation and machine learning”, Physica D, Vol. 2, (1986), pp. 187–204.

29 A Review of Population-based Meta-Heuristic

[7] Tang, K. S., Man, K. F., Kwong, S., He, Q., “Genetic algorithms and their

applications”, IEEE Signal Processing Magazine, Vol. 13, No. 6, (1996), pp.

22–37.

[8] Dorigo, M., Maniezzo, V., Colorni, A., “The ant system: optimization by a

colony of cooperating agents”, IEEE Transactions on Systems, Man, and

Cybernetics–Part B, Vol. 26, No. 1, (1996), pp. 29–41.

[9] Kennedy, J., Eberhart, R., “Particle swarm optimization”, Proceedings of

IEEE International Conference on Neural Networks, (1995), pp. 1942–1948.

[10] Shi, Y., Eberhart, R., “A modified particle swarm optimizer”, Proceedings of

IEEE International Conference on Evolutionary Computation, (1998), pp. 69–

73.

[11] Bishop, J. M., “Stochastic searching network”, Proceedings of 1st IEE

Conference on Artificial Neural Networks, (1989), pp. 329–331.

[12] Karaboga, D., “An idea based on honey bee swarm for numerical

optimization”, Technical Report, TR06, (2005).

[13] Shah-Hosseini, H., “Problem solving by intelligent water drops”,

Proceedings of IEEE Congress on Evolutionary Computation, (2007), pp.

3226–3231.

[14] Rabanal, P., Rodríguez, I., Rubio, F., “Using river formation dynamics to

design heuristic algorithms”, In AKL et al. (Eds.) Unconventional

Computation, (2007), pp. 163–177, Springer-Verlag.

[15] Rashedi, E., Nezamabadi, S., Saryazdi, S., “GSA: a gravitational search

algorithm”, Information Sciences, Vol. 179, No. 13, (2009), pp. 2232– 2248.

[16] Kaveh, A., Talatahari, S., “A novel heuristic optimization method: charged

system search”, ActaMechanica, Vol. 213, (2010), pp. 267–289.

[17] Qasem, S. N., Shamsuddin, S. M., “Memetic Elitist Pareto Differential

Evolution algorithm based Radial Basis Function Networks for classification

problems”, Applied Soft Computing, Vol. 11, No. 8, (2011), pp. 5565–5581.

[18] Qasem, S. N., Shamsuddin, S. M., “Radial basis function network based on

time variant multi-objective particle swarm optimization for medical diseases

diagnosis”, Applied Soft Computing, Vol. 11, No. 1, (2011), pp. 1427–1438.

[19] Senaratne, R., Halgamuge, S., Hsu, A., “Face recognition by extending

elastic bunch graph matching with particle swarm optimization”, Journal of

Multimedia, Vol. 4, No. 4, (2009), pp. 204–214.

[20] Cao, K., Yang, X., Chen, X., Zang, Y. Liang, J., Tian, J., “A novel ant colony

optimization algorithm for large-distorted fingerprint matching”, Pattern

Recognition, Vol. 45, (2012), pp. 151–161.

Z. Beheshti et al. 30

[21] Beheshti, Z., Shamsuddin, S. M., Hasan, S., “MPSO: Median-oriented

Particle swarm optimization”, Applied Mathematics and Computation, Vol.

219, No. 11, (2013), pp. 5817–5836.

[22] Beheshti, Z., Shamsuddin, S. M., Centripetal accelerated swarm particle

optimization and its applications in machine learning, PhD thesis, Universiti

Teknologi Malaysia (UTM), (2013).

[23] Cordon, O., Damas, S., Santamaria, J., “A fast and accurate approach for 3D

image registration using the scatter search evolutionary algorithm”, Pattern

Recognition Letter, Vol. 27, (2006), pp. 1191–1200.

[24] Lu, D. S., Chen, C. C., “Edge detection improvement by ant colony

optimization”, Pattern Recognition Letter, Vol. 29, (2008), pp. 416–425.

[25] Sousa, T., Silva, A., Neves, A., “Particle swarm based data mining

algorithms for classification tasks”, Parallel Computing, Vol. 30, (2004), pp.

767–783.

[26] Freitas, A. A., Timmis, J., “Revisiting the foundations of artificial immune

systems for data mining”, IEEE Transactions on Evolutionary Computation,

Vol. 11, No. 4, (2007), pp. 521–537.

[28] Beheshti, Z., Shamsuddin, S. M., Yuhaniz, S. S., “Binary Accelerated

Particle Swarm Algorithm (BAPSA) for discrete optimization problems”,

Journal of Global Optimization, (2012), In Press.

[29] Lazar, A., Reynolds, R. G., Heuristic knowledge discovery for

archaeological data using genetic algorithms and rough sets, Artificial

Intelligence Laboratory, Department of Computer Science, Wayne State

University, (2003).

[30] Russell, S. J., Norvig, P., Artificial Intelligence a Modern Approach, New

Jersey, Prentice Hall, (1995).

[31] Laporte, G., Osman, I. H., “Routing problems: A bibliography”, Annals

Operations Research, Vol. 61, (1995), pp. 227-262.

[32] Voss, S. Martello, S., Osman, I. H., Roucairol, C., Meta-Heuristics -

Advances and Trends in Local Search Paradigms for Optimization, Kluwer

Academic Publishers, (1999).

[33] Dreo, J., “Dreaming of Metaheuristics”, http://metah.nojhan.net, (2007).

[34] Vaessens, R. J. M., Aarts, E. H. L., Lenstra, J. K., “A local search template”,

Computers & Operations Research, Vol. 25, No. 11, (1998), pp. 969-979.

[35] Birattari, M., Paquete, L., Stutzle, T., Varrentrapp, K., “Classification of

Metaheuristics and Design of Experiments for the Analysis of Components”,

Technical Report, AIDA-01-05, (2001).

31 A Review of Population-based Meta-Heuristic

[36] Congram, R. K., Potts, C. N., Van de Velde, S. L., “An iterated dynasearch

algorithm for the single-machine total weighted tardiness scheduling problem”,

INFORMS Journal on Computing, Vol. 14, No. 1, (2002), pp. 52-67.

[37] Glover, F., McMillan, C., “The general employee scheduling problem: an

integration of MS and AI”, Computers & Operations Research, Vol. 13, No. 5,

(1986), pp. 563-573.

[38] Mladenović, N., Hansen, P., “Variable neighborhood search”, Computers &

Operations Research, Vol. 24, No. 11, (1997), pp. 1097–1100.

[39] Bonabeau, E. Dorigo, M., Theraulaz, G., Swarm intelligence: from natural to

artificial systems, Oxford University Press, (1999).

[40] Tripathi, P. K., Bandyopadhyay, S., Pal, S. K., “Multi-Objective Particle

Swarm Optimization with time variant inertia and acceleration coefficients”,

Information Sciences, Vol. 177, (2007), pp. 5033–5049.

[41] Voudouris, C., Tsang, E., “Partial constraint satisfaction problems and guided

local search”, Proceedings of Second International Conference on Practical

Application of Constraint Technology (PACT'96), (1996), pp. 337-356.

[42] Holland, J. H., Adaptation in natural and artificial systems: an introductory

analysis with applications to biology, control, and artificial intelligence,

Michigan, Ann Arbor, University of Michigan Press, 1975.

[43] Kirkpatrick, S., Gelatto, C. D., Vecchi, M. P., “Optimization by simulated

annealing”, Science, Vol. 220, (1983), pp. 671–680.

[44] Glover, F., “Tabu Search - Part 1”, ORSA Journal on Computing, Vol. 1, No.

2, (1989), pp. 190–206.

[45] Glover, F., “Tabu Search - Part 2”, ORSA Journal on Computing, Vol. 2, No.

1, (1990), pp. 4–32.

[46] Atashpaz-Gargari, E., Lucas, C., “Imperialist Competitive Algorithm: An

algorithm for optimization inspired by imperialistic competition”, Proceedings

of IEEE Congress on Evolutionary Computation, (2007), pp. 4661–4667.

[47] Goldberg, D. E., Deb, K., “A comparative analysis of selection schemes used

in genetic algorithms”, Proceedings of the First Workshop on Foundations of

Genetic Algorithms, (1990), pp. 69-93.

[48] Abraham, A., Nedjah, N., Mourelle, L. M., “Evolutionary Computation: from

Genetic Algorithms to Genetic Programming”, Studies in Computational

Intelligence (SCI), Vol. 13, (2006), pp. 1–20.

[49] Leung, Y., Gao, Y., Xu, Z. B., “Degree of population diversity - a

perspective on premature convergence in genetic algorithms and its markov

chain analysis”, IEEE Transaction on Neural Network, Vol. 8, No. 5, (1997),

pp. 1165-1176.

Z. Beheshti et al. 32

[50] Hrstka, O., Kučerová, A., “Improvements of real coded genetic algorithms

based on differential operators preventing premature convergence”, Advances

in Engineering Software, Vol. 35, (2004), pp. 237–246.

[51] Moslemipour, G., Lee, T.S., Rilling, D., “A review of intelligent approaches

for designing dynamic and robust layouts in flexible manufacturing systems”,

International Journal of Advanced Manufacturing Technology, Vol. 60,

(2012), pp. 11–27.

[52] Shi, Y., Eberhart, R. C., “Empirical study of particle swarm optimization”,

Proceedings of IEEE Congress on Evolutionary Computation, (1999), pp.

1945–1950.

[53] Bratton, D. and Kennedy, J., “Defining a standard for particle swarm

optimization”, Proceedings of the 2007 IEEE Swarm Intelligence Symposium,

(2007), pp. 120–127.

[54] Liang, J. J., Qin, A. K., Suganthan, P. N., Baskar, S., “Comprehensive

learning particle swarm optimizer for global optimization of multimodal

functions”, IEEE Transactions on Evolutionary Computation, Vol. 10, No. 3,

(2006), pp. 281–295.

[55] Zhan, Z.-H., Zhang, J., Li, Y., Chung, H.-S., “Adaptive Particle Swarm

Optimization”, IEEE Transactions on Systems, Man, and Cybernetics–Part B,

Vol. 39, No. 6, (2009), pp. 1362-1381.

[56] Gao, W-F., Liu, S-Y., Huang, L-L., “Particle swarm optimization with

chaotic opposition-based population initialization and stochastic search

technique”, Communications in Nonlinear Science and Numerical Simulation,

Vol. 17, No. 11, (2012), pp. 4316–4327.

[57] Clerc, M., Kennedy, J., “The particle swarm-explosion, stability and

convergence in a multidimensional complex space”, IEEE Transactions on

Evolutionary Computation, Vol. 6, No. 1, (2002), pp. 58–73.

[58] Trelea, I. C., “The particle swarm optimization algorithm: Convergence

analysis and parameter selection”, Information Processing Letters, Vol. 85,

No. 6, (2003), pp. 317–325.

[59] Kadirkamanathan, V., Selvarajah, K., Fleming, P. J., “Stability analysis of

the particle dynamics in particle swarm optimizer”, IEEE Transactions on

Evolutionary Computation, Vol. 10, No. 3, (2006), pp. 245–255.

[60] Yasuda, K., Ide, A., Iwasaki, N., “Stability analysis of particle swarm

optimization”, Proceedings of the fifth Metaheuristics International

Conference, (2003), pp. 341–346.

[61] Bergh, F. V., Engelbrecht, A. P., “A study of particle optimization particle

trajectories”, Information Sciences, Vol. 176, No. 8, (2006), pp. 937–971.

33 A Review of Population-based Meta-Heuristic

[62] Eberhart, R. C., Shi, Y., “Particle swarm optimization: Developments,

applications and resources”, Proceedings of IEEE Congress on Evolutionary

Computation, (2001), pp. 81–86.

[63] Li, X. D., Engelbrecht, A. P.: Particle swarm optimization, “An introduction

and its recent developments”, Proceedings of IEEE conference companion on

Genetic and evolutionary computation, (2007), pp. 3391–3414.

[64] Kennedy, J., Mendes, R., “Population structure and particle swarm

performance”, Proceedings of IEEE Congress on Evolutionary Computation,

(2002), pp. 1671–1676.

[65] Kennedy, J., Mendes, R., “Neighborhood topologies in fully informed and

best-of-neighborhood particle swarms”, IEEE Transactions on Systems, Man,

and Cybernetics Part-C, Vol. 36, No. 4, (2006), pp. 515-519.

[66] Liang, J. J., Suganthan, P. N., “Dynamic multi-swarm particle swarm

optimizer”, Proceedings of Swarm Intelligence Symposium, (2005), pp. 124–

129.

[67] Mendes, R., Kennedy, J., Neves, J., “The fully informed particle swarm:

simpler, maybe better”, IEEE Transactions on Evolutionary Computation,

Vol. 8, No. 3, (2004), pp. 204–210.

[68] Eberhart, R. C., Shi, Y., “Fuzzy adaptive particle swarm optimization”,

Proceedings of IEEE Congress on Evolutionary Computation, (2001), pp.

101–106.

[69] Eberhart, R. C., Shi, Y., “Tracking and optimizing dynamic systems with

particle swarms”, Proceedings of IEEE Congress on Evolutionary

Computation, (2001), pp. 94–97.

[70] Eberhart, R. C., Shi, Y. H., “Comparing inertia weights and constriction

factors in particle swarm optimization”, Proceedings of IEEE Congress on

Evolutionary Computation, (2000), pp. 84–88.

[71] Ratnaweera, A., Halgamuge, S., Watson, H., “Self-organizing hierarchical

particle swarm optimizer with time-varying acceleration coefficients”, IEEE

Transactions on Evolutionary Computation, Vol. 8, No. 3, (2004), pp. 240–

255.

[72] Angeline, P. J., “Using selection to improve particle swarm optimization”,

Proceedings of the 1998 IEEE International Conference on Evolutionary

Computation, (1998), pp. 84–89.

[73] Juang, C. F., “A hybrid of genetic algorithm and particle swarm optimization

for recurrent network design”, IEEE Transactions on Systems, Man, and

Cybernetics Part-C, Vol. 34, No. 2, (2004), pp. 997–1006.

Z. Beheshti et al. 34

[74] Zhan, Z.-H., Zhang, J., Li, Y., Shi, Y.-H., “Orthogonal Learning Particle

Swarm Optimization”, IEEE Transactions on Evolutionary Computation, Vol.

15, No. 6, (2011), pp. 832-847.

[75] Biabangard-Oskouyi, A., Atashpaz-Gargari, E., Soltani, N., Lucas, C.,

“Application of imperialist competitive algorithm for materials property

characterization from sharp indentation test”, International Journal of

Engineering Simulation, Vol. 1, No. 3, (2009), pp. 337-355.

[76] Rajabioun, R., Hashemzadeh, F., Atashpaz-Gargari, E., Mesgari, B., Salmasi,

F.R., “Identification of a MIMO evaporator and its decentralized PID

controller tuning using Colonial Competitive Algorithm”, Proceedings of the

17th World Congress, the International Federation of Automatic Control,

(2008), pp. 9952-9957.

[77] Atashpaz-Gargari, E., Hashemzadeh, F., Rajabioun, R., Lucas, C., “Colonial

Competitive Algorithm, a novel approach for PID controller design in MIMO

distillation column process”, International Journal of Intelligent Computing

and Cybernetics, Vol. 1, No. 3, (2008), pp. 337–355.

[78] Schutz, B., Gravity from the ground up, Cambridge University Press, (2003).

[79] Kennedy, J., Eberhart, R. C., “A discrete binary version of the particle swarm

algorithm”, Proceedings of IEEE international conference on computational

cybernetics and simulation, (1997), pp. 4104–4108.

[80] Rashedi, E., Nezamabadi, S., Saryazdi, S., “BGSA: binary gravitational

search algorithm”, Natural Computing, Vol. 9, No. 3, (2010), pp. 727–745.

[81] Kong, M., Tian, P., “Apply the particle swarm optimization to the

multidimensional knapsack problem”, In Rutkowski, L., Tadeusiewicz, R.,

Zadeh, L. A., Zurada, J. M. (Eds.) Artificial Intelligence and Computational

Intelligence, (2006), pp. 1140–1149, Springer-Verlag.

[82] Chuang, L.-Y., Chang, H.-W., Tu, C.-J., Yang, C.-H., “Improved binary PSO

for feature selection using gene expression data”, Computational Biology and

Chemistry, Vol. 32, No. 1, (2008), pp. 29-38.

[83] Mezmaz, M., Melab, N., Kessaci, Y., Lee, Y.-C., Talbi, E.-G. Zomaya, A.Y.,

Tuyttens, D., “A parallel bi-objective hybrid metaheuristic for energy-aware

scheduling for cloud computing systems”, Journal of Parallel and Distributed

Computing, Vol. 71, No. 11, (2011), pp. 1497–1508.

[84] Nezamabadi-pour, H., Rostami Shahrbabaki, M., Maghfoori-Farsangi, M.,

“Binary Particle Swarm Optimization: Challenges and new Solutions”, CSI

Journal on Computer Science and Engineering, in Persian, Vol. 6, No. 1,

(2008), pp. 21-32.

35 A Review of Population-based Meta-Heuristic

[85] Upadhyaya, S. and Setiya, R., “Ant colony optimization: a modified version”,

International Journal of Advances in Soft Computing and Its Applications, Vol.

1, No. 2, (2009), pp. 77-90.

[86] Chen, W.-N., Zhang, J., Chung, H. S. H., Zhong, W.-L., Wu, W.-G., Shi, U.-

H., “A novel set-based particle swarm optimization method for discrete

optimization problems”, IEEE Transactions on Evolutionary Computation,

Vol. 14, No. 2, (2010), pp. 278-300.

[87] Bagher R. M. and Payman, J., “Water delivery optimization program, of

jiroft dam irrigation networks by using genetic algorithm”, International

Journal of Advances in Soft Computing and Its Applications, Vol. 1, No. 2,

(2009), pp. 151-155.

[87] Juang, Y. T., Tung, S.-L., Chiu, H.-C., “Adaptive fuzzy particle swarm

optimization for global optimization of multimodal functions”, Information

Sciences, Vol. 181, (2011), pp. 4539–4549.

[88] Premalatha, K., Natarajan, A. M., “Hybrid PSO and GA Models for

Document Clustering”, International Journal of Advances in Soft Computing

and Its Applications, Vol. 2, No. 3, (2010), pp. 302-320.

[89] Hemanth, D. J., Vijila, C. K. S. and Anitha, J., “Performance Improved PSO

based Modified Counter Propagation Neural Network for Abnormal MR Brain

Image Classification”, International Journal of Advances in Soft Computing

and Its Applications”, Vol. 2, No. 1, (2010), pp. 65-84.

[90] Romeo, F., Sangiovanni-Vincentelli, A., “A theoretical framework for

simulated annealing”, Algorithmica, Vol. 6, (1991), pp. 302–345.

[91] Johnson, D. S., Aragon, C. R., McGeoch, L.A., Schevon, C., “Optimization

by simulated annealing—an experimental evaluation; part 2, graph-coloring

and number partitioning”, Operations Research, Vol. 39, No. 3, (1991), pp.

378-406.

[92] Dorigo, M., Birattari, M., Stützle, T., “Ant colony optimization – artificial

ants as a computational intelligence technique”, IEEE Computational

Intelligence Magazine, (2006), pp. 28-39.

[93] Dorigo, M., Socha, K, “An Introduction to Ant Colony Optimization”, In

Gonzalez, T., F. (Ed.) Approximation Algorithms and Metaheuristics, (2007),

pp. 1-19, CRC Press.

[94] Chan, F. T. S., Tiwari, M. K., Swarm intelligence: focus on ant and particle

swarm optimization, InTech, (2007).

