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Abstract 

     Exact optimization algorithms are not able to provide an appropriate solution 

in solving optimization problems with a high-dimensional search space. In these 

problems, the search space grows exponentially with the problem size therefore; 

exhaustive search is not practical. Also, classical approximate optimization 

methods like greedy-based algorithms make several assumptions to solve the 

problems. Sometimes, the validation of these assumptions is difficult in each 

problem. Hence, meta-heuristic algorithms which make few or no assumptions 

about a problem and can search very large spaces of candidate solutions have 

been extensively developed to solve optimization problems these days. Among 

these algorithms, population-based meta-heuristic algorithms are proper for 

global searches due to global exploration and local exploitation ability. In this 

paper, a survey on meta-heuristic algorithms is performed and several 

population-based meta-heuristics in continuous (real) and discrete (binary) 

search spaces are explained in details. This covers design, main algorithm, 

advantages and disadvantages of the algorithms. 

 

     Keywords: Optimization, Meta-heuristic algorithm, Population-based meta-
heuristic Algorithm, high dimension search space, Continuous and discrete 
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1      Introduction 

In the past decades, many optimization algorithms, including exact and 

approximate algorithms, have been proposed to address optimization problems. In 

the class of exact optimization algorithms, the design and implementation of 

algorithms are usually based on methods such as dynamic programming, 

backtracking and branch-and-bound methods [1]. However, these algorithms have 

a good performance in many problems [1, 2, 3, 4, 5], they are not efficient in 

solving larger scale combinatorial and highly non-linear optimization problems. 

Due to the fact that the search space increases exponentially with the problem size 

and exhaustive search is impractical in these problems. Also, traditional 

approximate methods like greedy algorithms usually require making several 

assumptions which might not be easy to validate in many situations [1]. Therefore, 

a set of more adaptable and flexible algorithms are required to overcome these 

limitations. Based on this motivation, several algorithms usually inspired by 

natural phenomena have been proposed in the literature. Among them, some 

meta-heuristic search algorithms with population-based framework have shown 

satisfactory capabilities to handle high dimension optimization problems.  

 

Artificial Immune System (AIS) [6], Genetic Algorithm (GA) [7], Ant Colony 

Optimization (ACO) [8], Particle Swarm Optimization (PSO) [9, 10], Stochastic 

Diffusion Search (SDS) [11], Artificial Bee Colony (ABC) [12], Intelligent Water 

Drops (IWD) [13], River Formation Dynamics (RFD) [14], Gravitational Search 

Algorithm (GSA) [5] and Charged System Search (CSS) [16] are in the class of 

such algorithms. These algorithms and their improved scheme have shown a good 

performance in the wide range of problems such as neural network training [17, 

18], pattern recognition [19, 20], function optimization [21, 22], image processing 

[23, 24], data mining [25, 26], combinatorial optimization problems [27, 28] and 

so on.  

 

This paper provides an overview of meta-heuristic algorithms followed by 

population-based meta-heuristics. The structure of this paper is organized as: the 

basic concepts of meta-heuristic algorithms and meta-heuristics classification are 

described in Section 2 and Section 3 respectively. A brief review of related works 

is presented in Section 4. In Section 5, several population-based meta-heuristic 

algorithms in real and binary search spaces are provided in details. Finally, a 

discussion and summary of this paper will be demonstrated in Section 6 and 

Section 7. 

2      Concept of meta-heuristic 

The words of “meta” and ‘‘heuristic” are Greek where, “meta” is “higher level” or 

“beyond” and heuristics means ‘‘to find”, ‘‘to know”, ‘‘to guide an investigation” 

or ‘‘to discover” [29]. Heuristics [30] are methods to find good (near-) optimal 
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solutions in a reasonable computational cost without guaranteeing feasibility or 

optimality. In other words, meta-heuristics are a set of intelligent strategies to 

enhance the efficiency of heuristic procedures. Laporte and Osman [31] defined a 

meta-heuristic as: “An iterative generation process which guides a subordinate 

heuristic by combining intelligently different concepts for exploring and 

exploiting the search space, learning strategies are used to structure information in 

order to find efficiently near-optimal solutions.” 

 

According to Voss et al. [32], a meta-heuristic is: “an iterative master process that 

guides and modifies the operations of subordinate heuristics to efficiently produce 

high-quality solutions. It may manipulate a complete (or incomplete) single 

solution or a collection of solutions per iteration. The subordinate heuristics may 

be high (or low) level procedures, or a simple local search, or just a construction 

method.” 

 

A majority of these algorithms has a stochastic behavior and mimics biological or 

physical processes. Different categories have been considered to classify meta-

heuristic algorithms so far. In the next section, their classification will be 

described from different viewpoints. 

3      Classification of meta-heuristic algorithms 

Different ways based on the selected characteristics have been proposed to 

classify meta-heuristics as shown in Fig. 1 [33]. This section briefly summarizes 

the most important classes including nature-inspired against non-nature inspired, 

population-based against single point search, dynamic against static objective 

function, single neighborhood against various neighborhood structures, and 

memory usage against memory-less methods [33, 34, 35]. 

3.1      Nature-inspired against non-nature inspired 

This class is based on the origin of algorithm. The majority of meta-heuristics are 

nature-inspired algorithms such as Ant colony Optimization (ACO), Particle 

Swarm Optimization (PSO) and Genetic Algorithms (GA). Also, some of them 

are non-nature-inspired algorithms like Iterated Local Search (ILS) [36] and Tabu 

Search (TS) [37]. 

3.2      Population-based against single point search 

Meta-heuristics can also be classified according to the number of solutions used at 

the same time. Trajectory methods, as illustrated in Fig. 2, are the algorithms 

working based on a single solution at any time and encompass local search-based 

meta-heuristics such as TS, ILS and Variable Neighborhood Search (VNS) [38]. 

Population-based algorithms perform search with multiple initial points in a 

parallel style like swarm-based meta-heuristics. 
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Fig. 1 Classification of meta-heuristic algorithms [33] 

 

 

 

Fig. 2 Trajectory-based method 
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Swarm-based algorithms are made up of simple particles or agents interacting 

locally with each other and with their environment [39]. Each particle follows one 

or several rules without any centralized structure for controlling its behavior. 

Consequently, local and random interactions among the particles are led to an 

intelligent global behavior. These algorithms apply two approaches to achieve a 

proper performance [40]: global exploration and local exploitation.  

 

The exploration is the potency of expanding search space, whereas the 

exploitation is the ability of finding the optimum solution around a good (near-) 

optimal solution. Due to insufficient knowledge about the search space in the 

initial steps, more exploration should be performed by the swarm to avoid 

trapping into local optima. In contrast, more exploitation is required by lapse of 

steps, so that the algorithm is able to tune itself in semi-optimal points. In other 

words, an appropriate trade-off between exploration and exploitation is necessary 

to have an efficient search.  

 

To realize the concepts of exploration and exploitation, particles pass three phases 

inspired from nature in each step, namely, self-adaptation, cooperation and 

competition. In the self-adaptation phase, each particle enhances its performance. 

Particles collaborate together by transferring information in the cooperation phase 

and finally, they compete to survive in the competition phase. These concepts 

direct an algorithm toward finding the best solution. [37]. 

3.3      Dynamic against static objective function 

Another characteristic which can be employed for the meta-heuristics 

classification is the way of utilizing the objective function. In other words, the 

objective function is kept “as it is” in the problem representation by some 

algorithms while some others, such as Guided Local Search (GLS) [41], modify it 

during the search. The idea behind this approach is to escape from local optima by 

changing the search landscape. Therefore, the objective function is modified by 

incorporating the collected information during the search process. 

3.4      Various against single neighborhood structure 

The majority of meta-heuristic algorithms apply one single neighborhood 

structure. In other words, the fitness landscape topology does not alter in the 

course of the algorithm while others, like Variable Neighborhood Search (VNS), 

employ a set of neighborhood structures. This latter structure gives the possibility 

to diversify the search by swapping between different fitness landscapes. 

3.5      Memory usage against memory-less methods 

The use of memory is one of the most important features to classify meta-

heuristics. In other words, memory usage is known as one of the fundamental 
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elements of a powerful meta-heuristic. Memory-less algorithms carry out a 

Markov process, as the information which is used to determine the next action is 

the current state of the search process. There are several ways of using memory. 

Also, the use of short term usually is different from long term memory. The first 

usually keeps track of recently performed moves, visited solutions or, in general, 

decisions taken. The second is usually an accumulation of synthetic parameters 

about the search.  

4      Related works 

Many meta-heuristic algorithms have been proposed so far as shown in Table 1. 

Genetic Algorithm (GA) as a population-based meta-heuristic algorithm was 

suggested by Holland [42]. In the algorithm, a population of strings called 

chromosomes encodes candidate solutions for optimization problems.  

 

Simulated Annealing (SA) is a local search meta-heuristic proposed by 

Kirkpatrick et al. [43] based on the way thermodynamic systems go from one 

energy level to another. In this method, each point x of the search space is a state 

and the function f(x) is an internal energy of a physical system in that state. The 

goal is to transfer system from random initial state to a minimum energy state. 

Therefore, some neighboring states x’ of the current state x are considered at each 

step and based on probabilities it is decided whether system stays in the state x or 

move to state x’. Finally, these probabilities move the system to states of lower 

energy until the system achieves a good state for the application.  

 

Farmer et al. [6] introduced Artificial Immune System (AIS) simulated the 

structure and function of biological immune system to solve problems. The 

immune system defends the body against foreign or dangerous cells or substances 

which invade it. In fact, AIS copies the method which the human body acquires 

immunity using vaccination against diseases. The AIS applies the VACCINE-AIS 

algorithm for identifying the best solution from a given number of anti-bodies and 

antigens. In AIS, the decision points and solutions are anti-bodies and antigens in 

the immune system which are employed to solve optimization problems. 

 

Tabu Search (TS) is a meta-heuristic local search algorithm introduced by Glover 

and McMillan [37] and formalized in [44, 45]. In local search, the near neighbors 

of each solution are checked in order to find an improved solution. In fact, TS 

applies a local search to move from the current solution x to an improved solution 

x' in the neighborhood of x. This process is continued until stopping criteria is 

satisfied.  

 

Another population-based algorithm is Particle Swarm Optimization (PSO) 

offered by Kennedy and Eberhart [9]. It is a global optimization algorithm which 

the best solution can be represented as a point or surface in a multi-dimensional 
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search space. In the algorithm, particles are evaluated by their fitness values. They 

move towards those particles which have better fitness values and finally obtain 

the best solution. 

 

 

Table 1: List of some meta-heuristic algorithms (1975-2012) 

No. Year Algorithm 
1.  1975 Holland introduced the Genetic Algorithm (GA). 

2.  1977 Glover proposed Scatter Search (SS). 

3.  1980 Smith elucidated genetic programming. 

4.  1983 Kirkpatrick et al. proposed Simulated Annealing (SA). 

5.  1986 Glover and McMillan offered Tabu Search (TS). 

6.  1986 Farmer et al. suggested the Artificial immune system (AIS). 

7.  1988 Koza registered his first patent on genetic programming. 

8.  1989 Evolver provided the first optimization software using the GA. 

9.  1989 Moscato presented Memetic Algorithm. 

10.  1992 Dorigo proposed the Ant Colony Algorithm (ACO). 

11.  1993 Fonseca and Fleming provided Multi-Objective GA (MOGA). 

12.  1994 Battiti and Tecchiolli introduced Reactive Search Optimization (RSO) 

principles for the online self-tuning of heuristics. 

13.  1995 Kennedy and Eberhart proposed Particle Swarm Optimization (PSO). 

14.  1997 Storn and Price suggested Differential Evolution (DE). 

15.  1997 Rubinstein presented the Cross Entropy Method (CEM). 

16.  1999 Taillard and Voss proposed POPMUSIC. 

17.  2001 Geem et al. provided Harmony Search (HS). 

18.  2001 Hanseth and Aanestad offered Bootstrap Algorithm (BA). 

19.  2004 Nakrani and Tovey presented Bees Optimization (BO). 

20.  2005 Krishnanand and Ghose introduced Glowworm Swarm Optimization 

(GSO). 

21.  2005 Karaboga proposed Artificial Bee Colony Algorithm (ABC). 

22.  2006 Haddad et al. suggested Honey-bee Mating Optimization (HMO). 

23.  2007 Hamed Shah-Hosseini offered Intelligent Water Drops (IWD). 

24.  2007 Atashpaz-Gargari and Lucas introduced Imperialist Competitive 

Algorithm (ICA). 

25.  2008 Yang presented Firefly Algorithm (FA). 

26.  2008 Mucherino and Seref suggested Monkey Search (MS). 

27.  2009 Husseinzadeh- Kashan provided League Championship Algorithm 

(LCA). 

28.  2009 Rashedi et al. introduced Gravitational Search Algorithm (GSA) 

29.  2009 Yang and Deb offered Cuckoo Search (CS). 

30.  2010 Yang developed Bat Algorithm (BA). 

31.  2011 Shah-Hosseini introduced the Galaxy-based Search Algorithm (GbSA). 
32.  2011 Tamura and Yasuda designed Spiral Optimization (SO). 

33.  2011 Rao et al. presented Teaching-Learning-Based Optimization (TLBO) 

algorithm. 

34.  2012 Gandomi and Alavi proposed the Krill Herd (KH) Algorithm. 

35.  2012 Çivicioglu introduced Differential Search Algorithm (DSA). 
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Ant Colony Optimization (ACO) [8] algorithm models the behavior of ants 

foraging and is useful for problems which require finding the shortest path as a 

goal. In real world, when ants explore their environment, it lays down the 

pheromones to direct each other toward resources. ACO also simulates this 

method and each ant records similarly its position so that more ants locate better 

solutions in later iterations. This trend continues until the best path is found. 

 

Artificial Bee Colony (ABC) algorithm is another population-based presented by 

Karaboga [12]. ABC algorithm mimics the intelligent behavior of honey bees and 

applies three phases to find the best solution: employed bee, onlooker bee and 

scout bee phases. Employed and onlooker bees have local searches around the 

neighborhood and choose food based on the deterministic and probabilistic 

selection in their phases respectively. They select food sources based on their 

experience and their nest mates and modify their positions. In Scout phase, bees 

(scouts) fly and choose the food sources randomly without using experience. If 

the nectar amount of a new source is higher than that of the previous one in their 

memory, they memorize the new position and forget the previous one. Therefore, 

ABC balances exploration and exploitation process with local and global search 

methods in employed, onlooker and scouts phases and obtains the best solution. 

 

Shah-Hosseini [13] proposed Intelligent Water Drops (IWD) algorithm inspired 

by the behavior of water drops in natural rivers. In the rivers, water drops find 

almost optimum paths to their destination through actions and reactions occurring 

among them and their riverbeds. The IWD algorithm simulates this trend and uses 

the constructive approach to find the optimum solution in a problem. Each 

artificial water drop constructs a solution (path) by traversing in the search space 

of the problem and modifying its environment. Among all these paths, the 

optimum or near optimum path is chosen by the algorithm. 

 

Atashpaz-Gargari and Lucas [46] introduced Imperialist Competitive Algorithm 

(ICA). It is a socio-politically global search strategy to address different 

optimization problems. The algorithm achieves the best solution based on a 

competition among empires. The best solution is an imperialist with the best 

power. 

 

Another population-based algorithm is River Formation Dynamics (RFD) [14] 

which is nature-inspired optimization and can be considered as a gradient version 

of ACO. The algorithm copies the behavior of water to form rivers. Waters shape 

the rivers by eroding the ground and depositing sediments. The altitudes of places 

are dynamically changed and decreasing gradients are created by transforming 

water in the environment. The gradients are followed by subsequent drops to 

make new gradients, emphasizing the best ones. By this method, good solutions 

are obtained in the form of decreasing altitudes. Due to the gradient orientation of 

RFD, the algorithm is proper to solve problems which use graphs and trees. 
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Gravitational Search Algorithm (GSA) was proposed based on the Newtonian 

gravity law and mass interactions by Rashedi et al. [15]. In the algorithm, objects 

in real world are considered as agents and their performance is measured by their 

masses which depend on fitness function values. The position of each agent in the 

search space shows a problem solution. The heaviest mass presents the optimum 

solution in the search space. By lapse of time, masses are attracted by the heaviest 

mass and are converged the best solution. 

 

Also, Charged System Search (CSS) [16] was developed based on the Newtonian 

laws from mechanics and the governing Coulomb and Gauss laws from 

electrostatics. The algorithm is multi-agent and each agent is called Charged 

Particle (CP). Each CP has an electric force and affects other CPs according to the 

Coulomb and Gauss laws. This force gives acceleration to CP and the velocity of 

each CP changes with time. The motion laws and the resultant forces determine 

the new position (new solution) of the CPs. These positions are evaluated and 

replaced with previous ones if these positions are better. The trend continues until 

the maximum number of iterations achieves and obtains the best result to that 

extent. 

 

As the scope of this study is meta-heuristic population-based algorithms, in the 

next section, some of the algorithms are explained in details for real and binary 

search spaces. 

5      Population-based meta-heuristic algorithms 

This section describes GA and PSO as older, GSA and ICA as newer population-

based algorithms in continuous and discrete search spaces although ICA has been 

defined only on real search space. 

5.1      Population-based meta-heuristic algorithms in real search 
space 

The majority of meta-heuristic algorithms have been designed for real valued 

vectors in search spaces. In this section, GA, PSO, ICA and GSA are elucidated in 

the real search space, although GA is applied for both real and binary search space. 

5.1.1      Genetic Algorithm (GA) 

GA simulates the biological evolution process of chromosomes using selection, 

crossover and mutation operators. Chromosomes present problem solutions and 

are evaluated based on their fitness function to select parents. Selection is an 

important process for choosing parents to reproduce new population and can 

affect the convergence of GA. The convergence speed of different selection 

schemes was first studied by Goldberg and Deb [47]. The commonly selection 
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methods are proportionate reproduction, tournament selection, ranking selection 

and Genitor or steady state selection.  

 

Roulette Wheel Selection or stochastic sampling with replacement is the simplest 

method in proportionate reproduction. In this technique, parents are selected based 

on their fitness. It means that chromosomes with better fitness have more chance 

to be chosen as demonstrated in Fig. 3. For each chromosome i, a probability is 

calculated as: 

 





N
j j

i
i

f

f
p

1

,      (1) 

 

Where, fi represents the fitness of chromosome i and N is population size. 

 

Then, an ascending array is made according to the probabilities of the 

chromosomes. N random numbers are generated in the range 0 to  
N
j jf1

 and 

chromosomes are chosen based on their probabilities of selection. As 

demonstrated in Fig. 3, Chromosome1 has more chance than others to be selected. 

However, when the difference of the fitness values is very much, the method is 

inefficient. For instance, if the best chromosome fitness is 95% of the roulette 

wheel, the other chromosomes will have a few chances to be chosen.  

 

 

 

Fig. 3 Roulette wheel selections 
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In Tournament Selection, a number of chromosomes are randomly selected from 

the population and the two best are chosen as parents. The parents produce 

offspring and this process is often repeated until reaching a tournament size. The 

tournament size usually depends on the population size and takes values ranging 

from 2 to population size. 

 

In the method of ranking selection, each chromosome has a rank in population. It 

means that the worst fitness will have fitness 1and the best will have fitness N 

(population size). After this, all the chromosomes have a chance to be chosen. In 

this method the best chromosomes are not considerably different from others 

hence, it leads to slow convergence rate.  

 

The main idea of Genitor or steady state selection is to survive the big part of 

chromosomes in next generation. Therefore, a few chromosomes with high fitness 

are chosen for creating a new offspring in each generation. Then, some 

chromosomes with low fitness are deleted and the new offspring is replaced in 

their place. The rest of population survives to generate new generation.  

 

Other operators in GA are Crossover and Mutation. In Crossover, some parts of 

two chromosomes are exchanged together. The crossover performs using several 

methods such as one, two and uniform crossover as demonstrated in Fig. 4. 

Therefore, one, two and several parts of parents’ chromosomes are exchanged in 

one, two and uniform crossover respectively. 

 

In Mutation, some parts of chromosomes randomly change in order to have better 

performance and escape from local optima. It is possible to lose the best 

chromosomes when new chromosomes are created by crossover and mutation 

operators. 

 

Elitism is a method which copies the best chromosome (or a few best 

chromosomes) to new population and the rest is created by the mentioned 

methods. Therefore, this method increases the performance of GA, because it 

avoids losing the best-found solution [48]. The above steps have been illustrated 

in Fig. 5. 

 

Although GA has been extensively used in various problems, it suffers from some 

disadvantages [49, 50, 51] such as: 

 

1. Using complex operators for selection and cross over. 

2. Unpredicted results. 

3. Premature convergence rate. 

4. Trapping into local optima. 

5. Taking long run-time. 

6. Weak local search. 
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7. .Difficult encoding scheme 

  

Fig. 4 GA crossover 

 

 

Step 1: Start. 

Step 2: Create first generation of chromosomes. 

Step 3: Define Parameters and fitness function. 

Step 4: Calculate the fitness of each individual chromosome.  

Step 5: Choose the chromosomes by Elitism method. 

Step 6: Select a pair of chromosomes as parents. 

Step 7: Perform Crossover and Mutation to generate new chromosomes. 

Step 8: Combine the new chromosomes and the chromosomes of Elitism Set in 

the new population (the next generation). 

Step 9: Repeat Step 4 to Step 8 until reaching termination criteria. 

Step 10: Return best solution. 

Fig. 5 GA pseudo code 
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5.1.2      Particle Swarm Optimization (PSO) in real search space 

PSO is a swarm-based meta-heuristic algorithm which simulates the flock of birds 

or insects motion in order to find the best solution. In the algorithm, the birds or 

insects called particles and are initialized by random positions and velocities [9, 

10]. Each particle is described by a group of vectors denoted as (


iPiViX ,, ) in a 

d–dimensional search space, where, 


iX  and 


iV  are the position and velocity of the 

ith particle defined as: 

 

  NiforxxxX idiii ,...,2,1,...,, 21 


.   (2) 

  NiforvvvV idiii ,...,2,1,...,, 21 


.   (3) 

 


iP  is the personal best position found by the ith particle: 

 

  NiforpppP idiii ,...,2,1,...,, 21 


.   (4) 

 

Also, the best position achieved by the entire population (


gP ) is computed to 

update the particle velocity: 

 

 pppPg gdgg ,...,, 21


.     (5) 

 

From 


iP  and 


gP , the next velocity and position of ith particle are updated by Eq. 

(6) and Eq. (7): 

 

               txtpCtxtpCtvtwtv idgdidididid randrand  211 , (6) 

     11  tvtxtx ididid ,    (7) 

 

Where, vid (t+1) and vid (t) are the next and current velocity of ith particle 

respectively. w is inertia weight, C1 and C2 are acceleration coefficients, rand is 

uniformly random number in the interval of [0, 1] and N is the number of particles. 

xid (t+1) and xid (t) show the next and current position of ith particle. 

 

In Eq. (6), the second and the third term are called cognition and social term 

respectively. Also, |vid|<vmax is considered and vmax is set to a constant based 
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on the bounds of solution space by users. A larger value of w encourages a global 

exploration (searching new areas) while a smaller inertia weight facilitates a local 

exploitation [52]. It is usually decreased from 0.9 to 0.4 [10, 52]. 

 

In PSO algorithm, two models for choosing 

Pg  are considered known as gbest (or 

global topology) and lbest (or local topology) models. In global model, the 

position of each particle is influenced by the best-fitness particle of entire 

population in the search space whereas in the local model, each particle is affected 

by the best-fitness particle chosen from its neighborhood. According to Bratton 

and Kennedy [53], the lbest model can return better results than the gbest model 

in many problems however; it might have lower convergence rate than gbest 

model. The steps of PSO are shown in the Fig. 6. 

 

Although PSO is easy to implement, it may face up to the slow convergence rate, 

parameter selection problem and easily get trapped in a local optimum due to its 

poor exploration when solving complex multimodal problems [54, 55, 56]. If a 

particle falls into a local optimum, sometimes it cannot get rid of itself from the 

position. In other words, if 

Pg  obtained by the population is a local optimum and 

the current position and the personal best position of particle i are in the local 

optimum, the second and third term of Eq. (6) tend toward zero, also w is linearly 

decreasing to near zero. Consequently, the next velocity of particle i tends toward 

zero and its next position in Eq. (7) cannot change and the particle remains in the 

local optimum. Therefore, variant PSO algorithms have been proposed to improve 

the performance of PSO and to overcome these limitations. 

 

 

Step 1: Start. 

Step 2: Initialize the velocities and positions of population randomly. 

Step 3: Evaluate fitness values of particles. 

Step 4: Update Pi  if particle fitness value iis better than particle best fitness value 

i ,    for i = 1, .. ., N. 

Step 5: Update Pg if particle fitness value i is better than global best fitness value,        

for i = 1, . . ., N. 

Step 6: Update the next velocity of particles. 

Step 7: Update the next position of particles. 

Step 8: Repeat steps 3 to 7 until the stop criterion is reached. 

Step 9: Return best solution. 

Fig. 6 PSO pseudo code 
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PSO is one of the most popular optimizer which has been widely applied in 

solving optimization problem. Hence, the enhancement of performance and 

theoretical studies of the algorithm have become attractive. Convergence analysis 

and stability studies have been reported in [57, 58, 59, 60, 61]. Also, some 

research on the performance of PSO has been done in terms of topological 

structures, parameter studies and combination with auxiliary operations [62, 63]. 

 

In topological structures, Kennedy and Mendes proposed a ring topological 

structure PSO (LPSO) [64] and a Von Neumann topological structure PSO 

(VPSO) [65] to enhance the performance in solving multimodal problems. Also, 

Dynamic Multi-Swarm PSO (DMS-PSO) introduced by Liang and Suganthan 

[66] to improve the topological structure in dynamic way. This new neighborhood 

structure has two important characters: Small sized swarms and randomly 

regrouping schedule. Since the small sized swarms are searching using their own 

best historical information, they are easy to converge to a local optimum because 

of PSO’s convergence property. In this case, if the neighborhood structures are 

kept unchanged, no information is exchanged among the swarms. To avoid this 

situation, a randomized regrouping schedule is considered and the good 

information obtained by each swarm is exchanged among the swarms. The new 

neighborhood structure has better performance on complex multimodal problems 

than classical neighborhood structure. Other topology structures have been also 

proposed to improve the performance of PSO. For example, Fully Informed 

particle swarm (FIPS) algorithm [67] used the information of the entire 

neighborhood to influence the flying velocity.  

 

In parameter studies, much research has been done on inertia weight w and 

acceleration coefficients C1 and C2. Shi and Eberhart [10, 52] suggested that the 

inertia weight w in Eq. (6) is linearly decreased by the iterative generations as Eq. 

(8): 

 

Maxiter

iter
wwww )( minmaxmax      (8) 

 

Where, iter is the current generation and Maxiter is maximum generations. The 

wmax and wmin are usually set to 0.9 and 0.4 respectively. Moreover, other values 

of w have been proposed to improve the searching ability of PSO. A fuzzy 

adaptive w was introduced and a random version setting w to 

2/)1,0(5.0 random was experimented for dynamic system optimization [68, 69]. 

Also, a constriction factor [57] was introduced based on Eq. (9) and the next 

velocity was computed according to Eq. (11): 
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1.421  CC ,      (10)
 

              txtpCtxtpCtvtv idgdidididid randrand  211  , (11) 

 

Where, C1 and C2 are both set to 2.05 and  is mathematically equivalent to w, as 

Eberhart and Shi [70] pointed out. 

 

The experiment results have illustrated that both acceleration coefficients C1 and 

C2 are essential to the success of PSO. Kennedy and Eberhart [9] offered a fixed 

value of 2.0, and this configuration has been adopted by many other researchers. 

Ratnaweera et al. [71] proposed self-organizing Hierarchical Particle Swarm 

Optimizer with Time-Varying Acceleration Coefficients (HPSO-TVAC) 

algorithm which used linearly time-varying acceleration coefficients, where a 

larger C1 and a smaller C2 were set at the beginning and were gradually reversed 

during the search. Therefore, particles allow moving around the search space 

instead of moving toward the population best at the beginning. The w in HPSO-

TVAC is used as Eq. (8) and C1 and C2 are computed as: 

 

2,1,)(  jC
Maxiter

iter
CCC jijijfj    (12) 

 

Where, Cjf and Cji are the final and initial values of acceleration coefficients 

which are changed from 2.5 to 0.5 for C1 and .from 0.5 to 2.5 for C2. 

 

Comprehensive Learning PSO (CLPSO) [54] is another PSO algorithm to 

improve the diversity of the swarm by encouraging each particle to learn from 

different particles on different dimensions. In the algorithm, each particle velocity 

can be updated by personal best position and other particles’ best position. Hence, 

the velocity of each particle in CLPSO is given by: 

 

      txtptvtwtv idddidid f i
randC 

),(
)()(1 , (13) 

 

Where,   Niforffff
idiii ,...,2,1,...,,

21


 
defines which particles’ best 

position the particle i should follow. p
ddf i ),(

 can be the corresponding dimension 

of any particle’s best position including its own best position and the decision 

depends on probability Pc, referred to as the learning probability, which can take 
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different values for different particles. For each dimension of particle i, a random 

number is generated. Hence, a tournament selection procedure has been suggested 

to choose randomly two particles and then select one with the best fitness as the 

exemplar to learn from for that dimension. CLPSO has only one acceleration 

coefficient C which is normally set to 1.494 and the inertia weight value is 

changed from 0.9 to 0.4. 

 

An Adaptive PSO (APSO) was proposed by Zhan et al. [55]. In this algorithm, an 

evolutionary factor f is defined and computed with a fuzzy classification method 

to design effective parameter and to improve the speed of solving optimization 

problems. Hence, w changes based on a sigmoid mapping w(f) as shown in Eq. 

(14). The large f will benefit for the global search and convergence state is 

detected by small f. 
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
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f
e
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f

.    (14) 

 

Moreover, acceleration coefficients are modified by increasing C1 and decreasing 

C2 in where the maximum increment or decrement between two generations is 

bounded by: 

 

    2,11  itCtC ii  ,   (15) 

 

Where,  is termed acceleration rate in interval [3.0, 4.0]. If the sum of C1 and C2 

is larger than 4.0, then both C1 and C2 are normalized to: 
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21
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Another term in APSO is an Elitist Learning Strategy (ELS) to help 

Pg  for 

jumping out of local optimal regions when the search is identified to be in a 

convergence state. If another better region is found for 

Pg , then the rest of the 

swarm will follow to jump out and converge to the new region. 

 

In addition to the mentioned algorithms, another active research trend in PSO is 

hybrid PSO with other evolutionary paradigms. Angeline [72] introduced a 

selection operation for PSO similar to GA. Also, hybridization of GA and PSO 

has been applied [73] for recurrent artificial neural network design.  
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Zhan et al. [74] introduced Orthogonal Learning Particle Swarm Optimization 

algorithm (OLPSO). The OL strategy could guide particles to discover useful 

information from the personal best position and its neighborhood’s best position 

in order to fly in better directions. In another study, Gao et al. [56] used PSO with 

chaotic opposition-based population initialization and stochastic search technique 

to solve complex multimodal problems. The algorithm called CSPSO found new 

solutions in the neighborhoods of the previous best positions in order to escape 

from local optima in multimodal functions.  

 

In other studies, Beheshti et al. proposed Median-oriented Particle Swarm 

Optimization (MPSO) [21] and Centripetal Accelerated Particle Swarm 

Optimization (CAPSO) [22] based on the improved scheme of PSO and 

Newtonian’s motion laws. The algorithms do not require any specific-algorithm 

parameters and have been introduced for both local and global topology. Also, 

CAPSO has been proposed for both real and binary search spaces.  

 

Although many extended PSO algorithms have been presented so far, the 

performance enhancement of PSO is an open problem because of its simple 

structure of PSO and easy to use. 

5.1.3      Imperialist Competitive Algorithm (ICA) 

ICA is a global search optimization algorithm inspired by imperialistic 

competition [46]. The algorithm is population-based including countries and 

imperialists. Each individual of the population is called a country. Some of the 

best countries with the best cost are chosen as imperialist states and others named 

colonies are divided among the imperialists according to their costs. Empires are 

formed by imperialist states and their colonies. After forming the empires, 

imperialistic competition is started among them to collapse weak empires and to 

remain the most powerful empire. 

 

To divide the colonies among the imperialists, the cost and power of each 

imperialist are normalized and initial colonies are allocated to the empires as Eq. 

(17) to Eq. (19): 
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Where, cn is the cost of the nth imperialist and Cn and pn are the normalized cost 

and power of the imperialist respectively. Also, N.Cn is the initial number of 

colonies related to the nth empire and Ncol is the total number of initial colonies.  

To form the nth empire, the N.Cn of the colonies are randomly selected and 

allocated to the nth imperialist. In real world, the imperialist states try to make 

their colonies as part of themselves. This process, called assimilation, is modelled 

by moving all of the colonies toward the imperialist as illustrated in the Fig. 7. In 

this Figure, θ and x are random angle and number with uniform distribution also; 

d is the distance between the imperialist and colony. 

 

 dUx ,0~ ,       (20) 

  ,~ U ,       (21) 

 

Where,  ,   are parameters which cause colonies to move their relevant 

imperialist in a randomly deviated direction. 

 

Fig. 7 Movement of colonies toward their relevant imperialist 

 

 

While a colony moves toward an imperialist, it might achieve a better position 

than the imperialist. In this case, the colony and the imperialist change their 

positions with each other. Also, it is possible that a revolution takes place among 

colonies which changes the power or organizational structures of empire. In ICA, 

revolution operator alters the colony position and revolution rate shows the 

percentage of colonies which will randomly change their position.  

 

Finally, empires compete together in order to possess and control other empires’ 

colonies as shown in Fig. 8. A colony of the weakest empire is selected and the 

possession probability of each empire, Pp, is computed as Eq. (23). The 
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normalized total cost of an empire, N.T.Cn,, is acquired by Eq. (22) and used to 

obtain the empire possession probability.  
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Fig. 8 Imperialistic competition 

 

 

Vector P is formed in order to divide the mentioned colonies among empires: 
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Vector R with the same size as P whose elements are uniformly distributed 

random numbers is created: 
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Vector D is formed so that the mentioned colony (colonies) is given to an empire 

whose relevant index in D is maximized.  

 

 DDDDRPD N imp
,...,,, 321 .    (26) 

 

According to vector D, the process of choosing an empire is like the roulette 

wheel in GA. However, this method is faster because the selection is based on 

probabilities values.  

 

The competition affects the power of empires and an empire power will be weaker 

or stronger. Therefore, all colonies of the weak empire are owned by more 

powerful empires and the weaker one is eliminated. The total power (cost) of an 

empire is modelled by adding the power of imperialist country (cost) and a 

percentage of mean power of its colonies (colonies costs) as follows: 

 

    empireofcoloniesCostmeanimprialistCostCT nnn . , (27) 

 

Where, T.Cn is the total cost of the nth empire and ξ is a positive small number.  

 

The competition will be continued until remaining one empire or reaching 

determined maximum iteration. The above steps have been summarized in Fig. 9.  

 

 

Step 1: Start. 

Step 2: Select some random points on the function and initialize the empires. 

Step 3: Move the colonies toward their relevant imperialist (Assimilation). 

Step 4: Randomly change the position of some colonies (Revolution). 

Step 5: If there is a colony in an empire which has lower cost than the 

imperialist, exchange the positions of that colony and the imperialist. 

Step 6: Unite the similar empires. 

Step 7: Compute the total cost of all empires. 

Step 8: Pick the weakest colony (colonies) from the weakest empires and give it 

(them) to one of the empires (Imperialistic competition). 

Step 9: Eliminate the powerless empires. 

Step 10: If stop conditions satisfied, stop, if not go to Step 3. 

 

Fig. 9 ICA pseudo code 

 

 

Although ICA has shown good performance in many problems [75, 76, 77], it 

faces some drawbacks which cause the use of the algorithm to be difficult: 
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1. Using many equations and complex operators. 

2. Long computational time. 

3. Tuning many parameters. 

4. Design only for continuous (real) search space. 

5.1.4      Gravitational Search Algorithm (GSA) in real search space 

GSA [15] is a meta-heuristic algorithm based on the Newtonian gravity and 

motion laws. According to the gravity law, objects attract each other by gravity 

force [78]. This force depends directly on the product of both objects masses and 

inversely proportional to the square of the distance between them. In GSA, the 

objects of real world are considered as agents and their masses depend on fitness 

function values. The position of each agent in the search space shows a problem 

solution. The heaviest mass presents an optimum solution in the search space. By 

lapse of time, masses are attracted by the heaviest mass and are converged to the 

best solution. Based on this law, GSA defines a system with N agents in a d-

dimensional search space. The position of the ith agent is shown as: 

 

  NiforxxxX idiii ,...,2,1,...,, 21 


.   (28) 

 

Where, xid presents the position of ith agent in the dth dimension. 

 

At the beginning, these positions are initialized randomly. Then, the gravity force 

of mass j on mass i at specific time t is computed as follows: 
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Where, Mi and Mj are the masses of agent i and agent j respectively.   is a small 

constant. Rij (t) is the Euclidean distance between probe i and j at time t: 

 

     txtxtR jiij ,
2

 .     (30) 

 

Also, G(t) is gravitational constant initialized at the beginning and will be reduced 

with time t to control the search accuracy. G is a function with the initial value of 

G
0
: 

 

   tGGtG ,0 .      (31) 

 

In the Eq. (29), Mi (t) is calculated as Eq. (33). 
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Where, fiti (t) is the fitness value of agent i at time t. Also, best(t) and worst(t) are 

the best and the worst values of fitness functions at time t.  

 

The total force acting on agent i at time t in dimension d is considered as: 
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N
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Where, randj is a random number in the range of [0, 1]. Kbest is the set of first K 

agents with the best fitness value and biggest mass. At the beginning, Kbest is 

initialized by K0 and linearly reduced during the running time of algorithm.  

 

Regarding the motion law, the force gives acceleration to the agent i: 
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This acceleration moves the agent from a position to another position. Hence, the 

next velocity of agent i in dimension d is computed as the sum of its current 

velocity and its acceleration: 

 

     tarandtvtv idiidid 1 .    (36) 

 

Also, the next position is considered as Eq. (37): 

 

     11  tvtxtx ididid ,    (37) 

 

Where, vid (t+1) and xid (t) are the next velocity and the current position of agent 

i in dimension d. 

 

Fig. 10 shows the pseudo code of GSA. As seen, algorithm is initialized randomly 

and each agent is evaluated based on its fitness value. After computing the total 

force and acceleration, the velocity and position each agent are updated. These 

steps will be continued until stopping criteria is met and the best solution is 

returned by the algorithm.  
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Similar to other meta-heuristic algorithms, GSA also has some weaknesses such 

as having complex operators and taking long computational time.  

 

 

Step 1: Start. 

Step 2: Randomized initialization. 

Step 3: Fitness evaluation of agents. 

Step 4: Update G(t), best(t), worst(t) and Mi(t) for i = 1,2,...,N. 

Step 5: Calculation of the total force in different directions. 

Step 6: Calculation of acceleration and velocity. 

Step 7: Updating agents’ position. 

Step 8: Repeat steps 3 to 7 until the stop criterion is reached. 

Step 9: Return best solution. 

 

Fig. 10 GSA pseudo code 

5.2      Population-based meta-heuristic algorithms in binary 
search space 

The binary search space can be considered as a hypercube which a particle or an 

agent can move to nearer and farther its corners by flipping various numbers of 

the bits [79].  

 

Each dimension has only a binary value of ‘0’ or ‘1’. Therefore, the particle 

velocity can be considered by the number of bits changed per iteration, or the 

Hamming distance between the particle at time t and t+l. Consequently, updating 

the particle position happens when a switching between ‘0’ and ‘1’ values occurs. 

 

Based on the mentioned rules, the binary versions of PSO and GSA have been 

proposed by Kennedy and Eberhart [79] and Rashedi et al. [80] respectively. In 

the next subsections, an overview of these algorithms is briefly represented to 

provide an appropriate background of binary search space. 

5.2.1      PSO in binary search space (BPSO) 

BPSO operates on discrete binary variables, therefore, the main difference 

between binary PSO and PSO is that the particle position has two values ‘0’ or ‘1’. 

Hence, the velocity of particle in BPSO is calculated as PSO algorithm (Eq. (6)) 

and is transferred into a probability function in the interval of [0, 1] in order to 

update the particle position as shown in Eq. (38) and Eq. (39): 
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Where,  vvvV idiii ,...,, 21


 and  xxxX idiii ,...,, 21


 
are the velocity and 

position of ith particle respectively, and N is the number of particles. For better 

convergence, |vid|<vmax is considered with vmax = 6. 

 

Although BPSO has been applied in different discrete problems [81, 82, 83], its 

convergence rate is not good in many applications [84].  

5.2.2      GSA in binary search space (BGSA) 

In binary mode of GSA [80], updating the force, acceleration and velocity are 

similar to the GSA algorithm (Eq. (29) to Eq. (36)). Also, Rij (t) in the Eq. (30) is 

computed as hamming distance between two agents i and j, and G can be 

considered as a linear decreasing function: 
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Where, G0 is a constant value, t and T are current iteration and the total number of 

iteration respectively. 

 

Moreover, the value of position is switched between ‘0’ and ‘1’ based on the 

velocity. Therefore, a probability function is defined to map the value of velocity 

to the range of [0, 1]. In other words, BGSA modifies the velocity according to Eq. 

(36) and the new position changes to either ‘0’ or ‘1’ based on the given 

probability of function as demonstrated in Eq.(41) and Eq. (42): 
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Similar to BPSO, in this context, |vid|<vmax and vmax =6 are considered. 

 

Although the experiments of meta-heuristic algorithms have shown promising 

results and many researchers have tried to improve the performance of these 

algorithms in optimization problems [85, 86, 87, 88, 89], more research is still 

needed to overcome the disadvantages of these algorithms and to enhance their 

efficiency. 
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6      Discussion  

Exact optimization algorithms are not efficient in solving large scale 

combinatorial and multimodal problems. In these problems, exhaustive search for 

the algorithms is impractical since the search space develops exponentially with 

the problem size. Hence, many researchers have applied meta-heuristic algorithms 

to solve the problems. These algorithms have many advantages to name a few: 

 

1. They are robust and can adapt solutions with changing conditions and 

environment. 

2. They can be applied in solving complex multimodal problems. 

3. They may incorporate mechanisms to avoid getting trapped in local 

optima. 

4. They are not problem-specific algorithm. 

5. These algorithms are able to find promising regions in a reasonable 

time due to exploration and exploitation ability. 

6. They can be easily employed in parallel processing. 

 

Although the mentioned algorithms have obtained satisfactory results in various 

fields, they do not guarantee an optimal solution is ever found also they have 

some unavoidable disadvantages.  

 

For instance, GA has the inherent drawbacks of prematurity convergence and 

unpredictable results. Also; it uses complex functions in selection and crossover 

operators and sometimes, the encoding scheme is difficult. PSO suffers from 

trapping into local optima and slow convergence speed, whereas GSA and ICA 

take long computational time to achieve the results. Furthermore, some of these 

algorithms have several parameters to tune and often parameters setting is a 

challenge for various optimization problems. Another noteworthy point is that 

many problems are expressed in a binary representation. In other words, some 

solutions are encoded binary form or some problems are binary in nature. 

Nevertheless, some meta-heuristic algorithms are designed for only continuous 

(real) or discrete (binary) search space and sometimes, they have good 

performance only for one of the search spaces. For example, ICA and the original 

of ACO have been designed for continuous and discrete search space respectively. 

Also, binary PSO has some inherent disadvantages such as poor convergence rate 

and failure to achieve desired results which bring about a decrease in performance 

of algorithm in the binary search space. Generally, the main disadvantages of 

using meta-heuristics are summarized as: trapping into local optima, slow 

convergence speed, long computational time, tuning many parameters, difficult 

encoding scheme and having good performance only in real or binary search 

spaces. Hence, the performance enhancement of previous meta-heuristics or even 
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introduction of new ones seems to be necessary. Table 2 provides the strengths 

and weaknesses of some well-known meta-heuristic algorithms. 

Table 2: Advantages and disadvantages of some meta-heuristic algorithms 
Algorithm Advantages Disadvantages 

GA 

[49, 50 , 51] 

The ability of: 

1. Solving different kinds of 

optimization problems  

2. Finding a global best solution 

in many problems 

3. Easy to combining with other 

algorithms 

4. Design for real and binary 

search space 

1. Slow convergence rate 

2. Finding sub-optimal solution 

3. Unpredictable results  

4. Dependency of the crossover 

and mutation rates on the 

stability and convergence. 

5. Weak local search 

6. Difficult encoding scheme 

AIS 

[51] 

1. It explores new search areas 

2. Free of local optima 

3. It is data driven self-adaptive 

methods.  

1. Finding sub-optimal solution 

rather than the exact optimum 

solution 

2. Too many parameter setting 

SA 

[90, 91] 

1. Low computational time  

2. Free of local optima 

3. Easy for implementation 

4. Convergent property 

Dependency of the solution 

quality on: 

1. Maximum iteration number of 

the inner loop (cooling 

schedule)  

2. Initial temperature 

ACO 

[92, 93] 

1. Scalability, robustness and 

flexibility in dynamic 

environments 

2. Proper for graph-based 

problems 

1. No easy to code. 

2. Using trial and errors to 

parameters initializations  

3. The original algorithm has 

been design for discrete search 

space 

4. Difficult theoretical analysis  

PSO 

[39, 54, 56, 94] 

1. Simple structure 

2. Easy to implement 

3. Fast and cheap  

4. Having few parameters to 

adjust 

5. Efficient global search 

approach 

6. Less dependent on initial 

points 

1. Weak local search 

2. Slow convergence rate and 

trapping into local optima 

when solving complex 

multimodal problems 

 

ICA 

1. Implementation of ICA code 

by author  

2. Compatible in different 

problems 

1. Using many equations and 

complex operators 

2. Long computational time 

3. Tuning many parameters 

4. Design only for continuous 

(real) search space. 

GSA 
1. Implementation of GSA and 

BGSA code by author  
1. Using complex operators 

2. Long computational time 
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2. Compatible in different 

problems 

7      Conclusion  

In this paper, we have presented and compared most important meta-heuristic 

algorithms. In the algorithms, several techniques have been considered to improve 

the performance of meta-heuristics. Meanwhile, none of meta-heuristic algorithms 

are able to present a higher performance than others in solving all problems. Also, 

existing algorithms suffer from some drawbacks such as slow convergences rate, 

trapping into local optima, having complex operators, long computational time, 

need to tune many parameters and design for only real or binary search space. 

Hence, proposing new meta-heuristic algorithms to minimizing the disadvantages 

is an open problem. 
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