
Int. J. Advance. Soft Comput. Appl., Vol. 5, No. 2, July 2013 

ISSN 2074-8523; Copyright © SCRG Publication, 2013 
 

PCA-based Reconstruction of 3D Face shapes 

using Tikhonov Regularization 

 

Ashraf Y. A. Maghari, Ibrahim Venkat, Iman Yi Liao and Bahari Belaton 
 

School of Computer Sciences, Universiti Sains Malaysia, Pinang, Malaysia  

e-mail: myashraf2@gmail.com 

 

School of Computer Sciences, Universiti Sains Malaysia, Pinang, Malaysia  

e-mail: ibrahim@cs.usm.my 

 

School of Computer Science, University of Nottingham Malaysia Campus 

e-mail: Iman.Liao@nottingham.edu.my 

 

School of Computer Sciences, Universiti Sains Malaysia, Pinang, Malaysia  

e-mail: bahari@cs.usm.my 

 
Abstract 

     Reconstructing a 3D face shape from a limited number of 2D 
facial feature points is considered as an ill-posed problem which can 
be solved using regularization. Tikhonov regularization is a popular 
method that incorporates prior information towards providing the 
existence of closed-form solutions which we obtain as a result of 
applying PCA, in order to solve the ill-posed problem. The common 
factors that generally affect Tikhonov regularization are the 
regularization matrix, the number of feature points, regularization 
parameters and noise. In this study we report our findings on how 
various factors influence the reconstruction accuracy based on a 
case study performed on the USF Human ID 3D database. Further, 
a statistical comparison between two Tikhonov regularization 
matrices viz., the identity matrix and the diagonal matrix comprising 
of the eigenvalues (eigenvalue matrix), has been performed. We 
found that, the reconstruction error can be reduced significantly by 
using the later one. Finally our study aids to determine the most 
feasible interval in conjunction with optimal regularization 
parameters which would lead towards achieving accurate and 
plausible solutions.  

     Keywords: Tikhonov Regularization, 3D face reconstruction, PCA, Tikhonov 
Regularization. 
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1      Introduction 

3D shape provides properties that are invariant to changes such as view point, 

illumination, background clutter and occlusion. These properties can help in 

applications like recognition, animation, medical application and allow prediction 

of appearance under new viewing conditions [1].  A major problem in computer 

vision is to extract such properties given a single 2D image. 

There are many approaches for the reconstruction of 3D faces from single images. 

One of such early techniques being utilized is Shape-from-Shading (SFS) [2-4], 

which capitalizes the idea that the depth information is related to the intensity of a 

face image acquired through a given/chosen reflectance model. SFS estimates the 

illumination direction in the 2D image to infer the 3D shape of the surface. It has 

been shown that SFS suffers from poor global shape control. Recently, 

Kemelmacher-Shlizerman and Basri proposed an approach that combines shading 

information with generic shape information derived from a single reference model 

by utilizing the global similarity of faces [1]. This method uses only a single 

reference model of a different person's face to reconstruct the 3D face shape. It 

does not need a learning stage to build a model for representing input faces. 

Consequently, not counting on a 3D reference model which keeps shape 

similarities with the input image may result in inaccurate 3D shape estimation. 

There are also conventional learning-based methods, such as neural networks [5, 

6] and typical statistical learning-based methods such as Hidden Markov Model 

(HMM) [7], Markov Random Field (MRF) [8] and analysis by synthesis using 3D 

Morph able Model (3DMM) [9]. Interestingly computational intelligence based 

approaches such as neural networks have also been applied in related computer 

vision areas such as medical image segmentation [10, 11]. 

 

In the last few decades much interest has been shown in the area of extracting 3D 

surfaces from observed 2D images by using statistical models which allows more 

realistic face reconstruction than other methods (e. g. [12] & [13]). These models 

can be used as prior information which can be incorporated with a fitting 

algorithm to estimate the complete 3D face shape from the given information such 

as a set of facial feature points. One of the reconstruction methods that uses prior 

knowledge to estimate the shape coefficients from a set of facial points is 

regularization [14]. In [14], Jiang et al. use a regularization equation that estimate 

the geometry coefficient in an iterative procedure. Alternatively regularization 

method has also been presented in [15]. 

Reconstructing the 3D face shape from a small set of 2D feature coordinates is 

considered as an ill-posed problem which can be solved by using regularization. 

One of the most appropriate methods that can be employed is the Tikhonov 

regularization [16]. In the last few decades, Tikhonov regularization has been well 

addressed in the field of inverse problems [17]. It is a popular and effective 
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method that can be easily incorporated with prior information embedded in a 

closed-form solution which can be readily obtained by applying PCA on the 3D 

face shapes. Regularization is necessary for robust, stable, and plausible 

reconstruction. It finds a tradeoff between fitting the 3D shape to the available 

facial feature points and producing plausible results in terms of prior information 

about the 3D face object [18]. Importantly reconstruction by means of a Tikhonov 

regularization method can be computed in one step (non-iterative way), thereby 

enabling faster 3D reconstructions. Hence, Tikhonov method is an efficient choice 

for several 3D oriented interactive tools.  

 The common factors that generally affect Tikhonov regularization are the 

Tikhonov regularization matrix (stabilizing item), the number of feature points, 

regularization parameters and noise. The objective of this contribution is to study 

the effects of these factors on the reconstruction accuracy and plausibility.  

Blanz and Vetter [15] have studied the effect of the regularization parameters and 

the noise on the accuracy with the aid of a Bayesian approach based regularization 

technique. The effect of feature points on 3D face shape reconstruction has been 

studied by Maghari et al. [19] using the Tikhonov Method that uses the 

eigenvalues as the regularization matrix. In this study we aim to estimate the 

effect of the other factors without varying the number of feature points. 

When the number of feature points available are large with respect to the degrees 

of freedom of the model, approximate solution tends to the true function when the 

number of feature points tends to infinity [20].  However, in the real application, 

in addition to the noise which depends on the acquisition system, the available 

feature points are limited. Hence, this study uses a small set of feature points (25 

2D points). By small number of feature points, overfitting can easily occur. To 

avoid overfitting, regularization that enforces the results to be plausible according 

to the prior information is needed. The regularization mechanism needs to find a 

tradeoff between fitting 3D shape to the given 2D facial landmarks and producing 

plausible solution in terms of prior knowledge [18]. Initially a PCA-based 3D face 

shape model is incorporated to gain prior information about the 3D face shape. 

Then the Tikhonov method is deployed to show how a complete face shape can be 

estimated from a limited number of feature points. The PCA-based 3D shape 

learning model relies on examples of 3D scans from the USF Human ID 3D Face 

database [9].  

In this paper we will study the effect of regularization parameters and the noise on 

the Tikhonov regularization with two different Tikhonov matrices. We will refer 

to the Tikhonov method that uses the identity matrix as STR (Standard Tikhonov 

Regularization) and the one that uses the diagonal eigenvalue matrix as ETR 

(Eigenvalue Tikhonov Regularization). We will also refer to the matrix that has 

the eigenvalues in its diagonal as eigenvalue matrix. ETR has been compared with 

STR in terms of accuracy, plausibility and robustness to noise. As part of this 
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contribution, we demonstrate how to determine the best interval for the 

regularization parameter that produces the best solution.  

This paper is organized as follows: Section 2 provides details on the PCA-based 

shape face representation. Reconstruction approaches based on regularization 

algorithms are briefed in Section 3. Section 4 describes distance-based evaluation 

procedures. In section 5, the regularization parameter interval is demonstrated. 

Experiments and statistical analysis are reported in section 6 and finally section 7 

concludes the outcome of our paper. 

 

2      PCA-based 3D face shape representation 

In order to build a PCA based face shape model, PCA decomposition has been 

applied to the 3D face shapes offered by the USF Human ID 3D database [10]. 

Each training face shape is represented using the 3D coordinates of all its vertices 

in terms of a triangulated mesh. Then these 3D shapes are aligned with each other 

in such a way that a 3D-3D correspondence for all the vertices are obtained [9]. 

Each face shape has p corresponding vertices which can be vector zed as: 

T
ipipipiiii zyxzyxs ),,,...,,,( 111= , (1) 

where si has the dimension n=3×p, n is the number of vertices and i = 1, …, m, 

where m represent the number of training shapes.  Based on this vectorization, the 

mean face shape among the training face shapes is computed and the deviation of 

each training shape from the mean is calculated. Singular Value Decomposition 

(SVD) [21] is then used to perform PCA on the covariance matrix resulting in a 

morphable model. 

A new shape vector n
rec Rs ∈  can be expressed as  

i

m

i

i00rec eαsEαss ∑
=

+=+=
1

, (2) 

where 0s  is the mean 3D shape, ],...,,[ 21 meeeE =  is a basis vector matrix and αi is 

the coefficient of the scaled basis vector ie . Assuming nR∈−= 0ssx , Eq. (2) can 

be minimized to 

Eαxrec = . (3) 

Since E is an orthogonal matrix, the PCA-coefficients α of a vector x  can be 

derived from Eq. (3) as 
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xET=α . (4) 

A new 3D face shape can be approximately represented by making use of Eq. (4) 

and Eq. (2). Taking into account the data uncertainties and the few number of 

available feature coordinates pf <<  on the real 2D face images, Eq. (3) becomes  

εα += Ax f . (5) 

mlRA ×∈  is the corresponding subset of the matrix of scaled basis 

vectors mnRE ×∈ and lR∈ε  can be considered as measurement errors with 

unknown properties. fff ssx 0−= , )2( flR l
f

=∈s  and fs0 are corresponding 

points on 0s (the average 3D face shape).  

 

The primary least square (LS) method can be used to solve for α  

f
TT xAAA 1)( −=α . (6) 

However, in addition to the measuring errors, the measured feature points 
f

x   

captures only a small portion of the original image x, which introduces errors in 

the recovered model. This problem is considered as an ill-posed problem. 

Therefore, we see that, regularization is necessary for a robust and plausible 

solution, which finds a tradeoff between plausible results (in terms of the prior 

information) and fitting the 3D shape to the given facial points. 

 

3      Regularization based Reconstruction 

The standard Tikhonov regularized solution of Eq. (5) is to minimize the 

following function:   

{ }22 ||||||||minarg αλαα
α

+−= xAreg . (7) 

Here, 
2|||| α

 is the stabilizing term and 0>λ is called the regularization parameter 

which is chosen to balance the data fitting error so as to get a plausible solution. A 

standard regularized approximation for α is given by 

)()( 1
f

TT
reg xAIAA −+= λα  , (8) 

where I is the identity matrix.  
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Different regularization matrices have been employed in order to improve the 

standard Tikhonov regularization. Obviously, different reconstruction accuracies 

will be obtained by using different regularization matrices. The objective function 

in Eq. (7) can be generalized as: 

{ }2
0

2 ||||||||minarg ααλαα
α

−+−= xAreg . (9) 

According to the Bayesian posterior principle, 0α  is the expected value of α which 

can be computed as the average vector comprising of all the face shape parameter 

vectors.  Eq. (9) has an explicit optimal solution for regα  and is given by 

).()( 0
1

0 αλαα AxALLAA f
TTT

reg −++= −  (10) 

Owing to the Bayes’ theorem and under the assumption that the data matrix 

0SSX −= is a multivariate normal distribution and the errors in fx  are 

independent with zero mean, the Tikhonov-regularized solution yields the most 

probable solution [22].  Let C be the inverse of the covariance matrix of α, then 

according to the maximum posterior probability, the Tikhonov matrix can be 

given as LLC T= . The covariance matrix is the diagonalised matrix with 

eigenvalues. So, the stabilizing item is chosen to be the inverse of the diagonal 

eigenvalue matrix W. Assume that 00 =α , then model parameter α can be 

estimated as  

f
TT xAWAAα 11)( −−+= λ

)
. (11) 

Then, a new face shape 
recs  can be obtained by applying α

)
 to Eq. (2). In the next 

section we will discuss how to evaluate the Tikhonov method that uses the 

eigenvalue matrix as a regularization matrix (ETR: Eq. (11)) compared with the 

standard Tikhonov (STR: Eq. (8)).  

4      Distance-based Evaluation 

The evaluation is based on computing the average distance between the points of 

reconstructed face shape vector and the ground-truth vector  

∑
=

−=
n

i

reconstiorigir ss
n

E
1

.,., ||||
1

. (12) 

To compare between the STR (Eq. (8)) and ETR (Eq. (11)), new test face shapes 

are reconstructed from a set of feature points using both the methods. Then, 

according to Eq. (12), for every test face shape, the minimum rE  is computed by 



  

 

 

7                                                                                 PCA-based Reconstruction of 3D Face                                                

the optimal regularization parameter λ. The 3D faces in the database are already 

aligned with each other, which mean that the points can be easily selected by their 

indices. A set of f = 25 salient feature points such as eye corners, eyebrows, mouth 

corners, nose and face contours have been selected from the face model. These 

points can be directly used to compute the 3D shape coefficient α using Eq. (8) or 

Eq. (11). Then, the coefficients are used to reconstruct the 3D face shape using 

Eq. (2). The resulted face shape is compared with the original shape by 

calculating rE .  

ETR is evaluated quantitatively in order to compare it to the STR. By quantitative 

evaluation, rE  of the reconstructed 3D face shape has been computed for all the 

test face shapes. Then we have applied the t-Test to compare the effect of the two 

matrices on the reconstruction error. The t-Test is a statistical test which allows 

the comparison of any two methods on objective terms with knowledge of risks 

associated with reaching the wrong conclusion. On the other hand, examples of 

reconstructed 3D face shapes have been visualized to clearly justify the qualitative 

features of the reconstructed face shapes. This is to check how well the qualitative 

evaluation complies to the results which have been obtained using quantitative 

techniques. Further, we compute the Euclidean distance between the reconstructed 

face shape and the mean face to determine how close is the solution to the mean 

face using Eq.13. 

∑
=

−=
n

i

reconstiim ss
n

D
1

.,,0 ||||
1

. (13) 

5     Regularization Parameter Interval  

In this section, we examine how to determine the interval for λ that reduces the 

rE  between the reconstructed face shape and its ground truth while producing a 

plausible solution in terms of prior knowledge. Further, to avoid the excessive 

smoothness of the solution (the highly closeness to the mean face), Dm between 

the reconstructed face and the mean face is computed. By this way, we can find 

out the best interval for λ that could produce a plausible but not necessarily a very 

smooth solution. The quality of reconstructed faces can be controlled by λ as 

shown in Fig. 1. Low values of λ can lead to overfitting and high values leads to 

the mean face. For example, by applying STR (Ps. see upper row of Fig. 2), when 

λ > 0.01, Dm converges to zero and the results becomes closer to the mean face; 

However we see that rE  grows and overfitting occurs when λ converges to 0. 

According to the results shown in Fig. 1 (right) where the features are noise free, 

we can conclude that a good interval for an optimal λ, in terms of the minimum 

average of rE  (for all 20 test faces) and plausible solution, is located in the 

interval (0.000001, 0.001). However we can see that, for noisy feature points the 
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best interval can be (0.0001, 0.001) according to the average reconstruction errors 

rE  shown in Fig. 1 (left). 

 

       
 

Fig. 1. The effect of λ on the average reconstruction errors rE  and the distance 

from the mean face for 20 test faces, for a given set of  25 feature points using the 

Standard Tikhonov Regularization method (STR). 

 

 

 

Fig. 2. For a given set of 25 2D feature coordinates of a probe 3D face (left), 

3D face shapes for the same probe face were reconstructed with different λ. The 

upper row shows reconstructed shapes using STR while the lower row shows 

reconstructed shapes using ETR.        

 

For ETR, the association to λ has the same manner as experienced by the STR but 

with a different set of values. Fig. 2 (lower row) shows reconstructed face shapes 

for the same probe face shapes with different values of λ. For smaller values of λ, 

the face shape becomes far from the original shape, rE  gets larger and also the 

face is distorted when λ converges to 0. In contract, the shape becomes more 

smooth when rE  decreases, and reach its minimum at λ =10. For all 20 test faces, 

the values of λ in the interval (10, 1000) produce the best average of rE  values 

with slight convergence to the average face as λ increases (see Fig. 3 (left)). If λ > 
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1000, rE increases and Dm remarkably decreases until λ ≈  100000; further the 

reconstructed face becomes the mean face for very large λ values whereas Dm 

converges to 0.  

In terms of plausibility and closeness to the ground truth, the best interval has 

been suggested to be within the interval (10, 1000), whereas the average rE  for 

all test faces has the minimum value. For noisy feature points, the best interval 

can be (100, 10000) whereas the average reconstruction errors rE has the 

minimum values and Dm is large enough for non successive smooth solution (see 

Fig. 3, right). 

    

 

     

Fig. 3. Using ETR, the effect of λ on the average reconstruction errors rE  and the 

distance from the mean face for 20 test faces, given 25 feature points.  

 

6      Experiments and Statistical Analysis 

Let us recall that, this work aims to explore the influence of the regularization 

matrices with respect to the accuracy of 3D face shape reconstruction by using 

Tikhonov regularization method. We have evaluated the accuracy of 

reconstruction for both of the standard identity matrix and the Tikonov’s 

eigenvalue matrix and compared them. The USF Human ID 3D Face database [9] 

which contains 100 3D faces has been used for our experimental validations. The 

PCA model has been trained with the 80 3D face shapes. The remaining 20 3D 

face shapes have been used for the purpose of testing.  

6.1      Reconstruction from noise free feature points 

In this section, we analyze how the two regularization matrices perform on the test 

3D face shapes that have been chosen from outside the training dataset. The xy 

coordinates of the selected feature vertices have been used for reconstruction. The 

results in Fig. 4 shows that the reconstruction errors yielded by reconstruction of 

20 test faces using the ETR is minimal when compared to the STR. Moreover, the 
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average results of the 20 test faces shown in Table 1 indicates that ETR 

outperforms STR with a 95% confidence level, whereas the P-value of the t-Test 

corresponding to the two methods is less than 0.05 (level of significance). This 

indicates that there is a statistically significant difference between the 

reconstruction errors of the two methods. This also justifies that using ETR yields 

better accuracy than that of STR. Fig. 5 visualizes the effect of reconstructed 3D 

face shapes for the same original face (left) by using ETR and STR.  

 

 

Fig. 4.  Comparison between the ETR and STR in terms of "reconstruction from 

25 noise free feature points". rE  is computed by the optimal regularization 

parameter λ.   

 

 

Table 1. Comparison of results between the reconstruction errors yielded by   

               ETR and STR. 

 

f = 25 

values×100 

ETR STR t-Test against   

significant eigenvalues 

 (P-value) 
Mean Std. Mean Std.  

Noise free  

feature points 
0.61 0.151 0.92 0.184 1.39E-07 

Noisy  

feature points 
0.75 0.19 1 0.18 1.49E-05 
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Fig. 5. Reconstruction of 3D face shapes from two different sets of 25 feature 

points viz., noisy and noise free feature points using the different regularization 

matrices. The results depend on the optimal λ which produces the minimum rE . 

6.2      Reconstruction from Noisy feature points  

In the previous section, we have demonstrated how the reconstruction error can be 

reduced by using different regularization matrices. However, if we add random 

noise to all feature points coordinates, α becomes more difficult to estimate, and 

overfitting can easily occur. Fig. 6 shows the reconstruction errors found by 

reconstruction of 20 test faces from 25 feature points using both the matrices. This 

further justifies that the eigenvalue Tikhonov (ETR) outperforms the standard 

Tikhonov (STR) in terms of reconstruction accuracy for all test faces. Moreover, 

the average errors of the 20 test faces shown in Table 1 indicates that the 

reconstruction errors of ETR are significantly lower than those for STR at 95% 

confidence level. Fig. 5 visualizes the reconstructed 3D face shapes for the same 

original face (left) by optimal λ using STR and ETR. It can be seen that the 

quality of reconstructed faces using ETR looks more precise and intuitive than 

those reconstructed by the STR for noisy and noise free feature points.  

 

 

Fig. 6. Reconstruction errors generated with the aid of choosing 25 noisy feature 

points. rE  is computed by the optimal regularization parameter λ.   
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6.3      Reconstruction of 3D Face Shapes from Images 

The CMU-PIE database [23] has been used for testing the visual effects of the 

proposed model. We intend to reconstruct 3D models for the 2D images of CMU-

PIE database. From small number of 2D facial landmarks, the proposed algorithm 

can recover the 3D shape of the given 2D face image. In this work, the input 2D 

images are in near frontal pose with most of their expression being neutral. The 

feature points which have been manually selected, have been aligned with the 

reference 3D model using Procrustes Analysis, which is the usual preliminary step 

before the reconstruction stage. The aligned feature points have been used to 

compute the model parameters α using ETR Eq. (11). Then, α has been used to 

reconstruct the 3D shape using Eq.(2). Fig. 7 shows two typical 2D images (left) 

and their corresponding reconstructed 3D faces using ETR (right).  

 

 

Fig. 7. For a given set of 25 2D feature points of typical real 2D images (left) their 

corresponding 3D face shapes have been reconstructed with different distance 

measures of  Dm. 

 

For each of these 2D images, 6 reconstructed faces with different distances Dm 

have been shown. It can be seen that the quality of reconstructed faces gets 

degraded if Dm increases. In other words, we can infer that the reconstruction of 

faces gets gradually smoother when Dm decreases. Hence, we can employ the 

distance from the mean face (Dm) to evaluate the 3D faces reconstructed from real 

2D face images. According to the results seen in Fig. 7, we can see that an 

optimal Dm may be the value around 0.001 (the average distances Dm of all 3D 

faces in the training data set). Assuming the feature points are available, our 

MATLAB implementation of the ETR algorithm for reconstructing the complete 

face shape vector takes about one second on a workstation with Intel(R) Xeon(R) 

CPU E5620 @ 2.40GH which justifies that the ETR based 3D face reconstruction 

is quite fast and hence feasible to be deployed for real time applications.   
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7   Conclusion 

A major problem in computer vision is to extract 3D shape properties from single 

2D images. Example-based models allow more realistic face reconstruction than 

other methods. In this paper, the standard PCA-model has been used as a holistic 

model to represent the object class of 3D face shapes, which aids in solving the 

ill-posed problem of reconstruction of complete 3D face shapes from their 2D 

images. This holistic model has been incorporated with the Tikhonov method to 

show how to estimate the 3D shapes of novel faces using a limited number of 

feature points. The common factors that generally affect Tikhonov regularization 

are the regularization matrix, the number of feature points, value of regularization 

parameters λ, and noise. This work is basically an effective case study to show the 

effect of the regularization matrices on the quality of reconstructed faces with 

respect to a small set of feature points (25 2D feature points). The effects of the 

regularization parameter and noise have been also demonstrated. 

Our extensive experimental results justifies that by using ETR, the reconstruction 

errors could be significantly reduced for all of the test faces when compared to the 

STR. Further we have shown that ETR outperforms the STR with 95% confident 

level in terms of reconstruction errors. In terms of plausibility and closeness to the 

ground truth, our results demonstrate that the quality of reconstructed faces using 

ETR is better than those reconstructed using STR even in the presence of noise. 

We have also shown a mechanism of determining the best interval of λ in order to 

find the optimal solution. Our experiments on real 2D images demonstrate that the 

ETR method was able to reconstruct plausible 3D face shapes from limited 

number of feature points in an effective way. Importantly as the ETR method 

incurs less computation time, it can be readily deployed in many real world 

interactive applications. For our future work, we intend to evaluate the more 

challenging task of reconstruction of images with varying degrees of poses and 

expressions.  
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