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Abstract 

This article adopts machine learning techniques Relevance Vector 
Machine (RVM), Gaussian Process Regression (GPR) and Minimax 
Probability Machine Regression (MPMR)} for determination of 
Uniaxial Compressive Strength (UCS) and the Modulus of Elasticity 
(E) of Travertine samples. Point load index (Is(50)), porosity (n), P-
wave velocity (Vp), and Schmidt hammer rebound number (Rn) have 
been taken as inputs of the RVM, GPR and MPMR model. The 
outputs of RVM, MPMR and GPR are UCS and E. The developed 
RVM gives equations for prediction UCS and E. The performance of 
GPR, MPMR and RVM has been compared with the Artificial 
Neural Network (ANN) models.  The simulation results show that 
the proposed methods give encouraging performance for prediction 
of UCS and E of Travertine samples. 
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1      Introduction 

This document can be used as a template for Microsoft Word versions 6.0 or later. 

You may open this document then type over sections of the document or cut and 

paste to other document and then use adequate styles. The style will adjust your 

fonts and line spacing. Please set the template for A4 paper (21 x 29.7 cm). For 

emphasizing please use italics and do not use underline or bold. Please do not 

change the font sizes or line spacing to squeeze more text into a limited number of 

pages. Uniaxial Compressive Strength (UCS) and the modulus of elasticity (E) are 

key parameters in rock engineering. Experimental methods are difficult task for 

determination UCS and E. There are different methods available for prediction of 

UCS and E in the literatures [1-11]. These methods are based on index tests. Index 

tests are very easy to carry out. Sophisticated instrument is not required for 

conducting index tests. It can be easily done in field. However, the index tests 

have always uncertainty. It was found that there was no agreement between the 

equations suggested by these methods [11]. While some equations show the same 

trend, the others differ [11]. Dehghan et al.[12] successfully adopted Artificial 

Neural Network (ANN) for prediction UCS and E of Travertine samples. 

However, ANN has various drawbacks such as low generalization capability, 

black box approach, arriving at local minima, overtraining problem, etc [13;14]. 

The developed ANN did not give any equation. So, user can not use the developed 

model easily.  

This article employs machine learning techniques {Gaussian Process Regression 

(GPR), Relevance Vector Machine (RVM), and Minimax Probability Machine 

Regression (MPMR)} for prediction of UCS and E of Travertine samples. GPR is 

non-parametric Bayesian regression [15;16]. It is constructed within a Bayesian 

framework. There are lots of applications of GPR in literatures [17-19].  RVM is 

developed by Tipping [20]. It is a Bayesian sparse kernel technique for regression 

and classification [21].  Researchers have successfully adopted RVM for solving 

different problems in engineering [22-24]. MPMR is developed based on 

Minimax Probability Machine Classification (MPMC) [25;26]. It is a discriminant 

classifier. It has been successfully applied in the different fields of engineering 

[27;28]. This article uses the database collected from the work of Dehghan et 

al.[12]. The database contains information about point load index (Is(50)), porosity 

(n), P-wave velocity (Vp),  Schmidt hammer rebound number (Rn), UCS and E. A 

comparative study has been presented between the developed GPR, RVM, MARS 

and ANN models developed by Dehghan et al.[12].  This article is organized as 

follows. The descriptions about GPR, RVM and MPMR have been presented in 

section 2. Section 3 describes the results and discussions. Major conclusions have 

been drawn in section 4.   
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2      Proposed Methods 

GPR uses the following equation for prediction of output(y).  

                                                  iiii xfy    (1)

  

Where x is input, y is output and i is Gaussian noise with zero mean and 

variance  2

n  [29]. This article uses Is(50), n, Vp, and Rn as input variables. The 

output of GPR is UCS and E. So,   nps RVnIx ,,,50     and  EUCSy , .  

Output variable(y) takes the following form:  

                                            IxxKNy n
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Where K(x,x) is covariance matrix.  

For a new input xN+1, we can write,  
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k(xN+1) is the N × 1 vector of covariances between training inputs and the test 

input.   

The distribution of yN+1 is Gaussian with mean and variance: 
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To develop GPR, the total datasets have been divided into the following two 

groups: 

Training Dataset: This is used to construct the GPR model. This article uses 23 

out of 30 datasets as training dataset.  

Testing Dataset: This is used to verify the developed GPR. The remaining 7 

datasets have been adopted as testing dataset. Radial basis function 
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xxK ,  is width of radial basis function) has been 

used as covariance function. The data is normalized between 0 and 1.  Table 1 

shows the statistical parameters of the dataset. 
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Table 1: Statistical parameters of the dataset 

Variables Mean Standard 

Deviation 

Kurtosis Skewness 

Is(50)(MPa) 3.17 0.41 0.07 2.64 

Vp(km/s) 5.35 0.27 -0.17 2.15 

Rn 27.87 1.43 0.30 1.99 

n(%) 6.57 2.91 -0.37 1.59 

E(GPa) 5.36 1.98 1.27 4.44 

UCS(MPa) 38.99 12.58 0.90 2.94 

In RVM, output(y) is determined by using the following equation. 

                                           



n

i

ii axxKwy
1

0,                                                  (7) 

where  nwwwwa ,...,,, 210 , x is input, w is weight and K(xi,x) is kernel function.  

This article uses Is(50), n, Vp, and Rn as input variables. The output of RVM is UCS 

and E. So,   nps RVnIx ,,,50  and  EUCSy , . 

Given a dataset of input-target pairs   1, 
N

nnn yx , we follow the standard 

formulation and assume p(y|x)  is Gaussian N(y|y(x),σ
2
). The mean of this 

distribution for a given x is modelled by y(x) as defined in Eq.(7).The likelihood 

of dataset can be written as 
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RVM assumes a Gaussian prior on the kernel weights. Gaussian prior has zero 

mean and variance ( 1

i , is hyperparameters). Typically, new higher-level 

parameters are used to constrain an explicit zero-mean Gaussian prior probability 

distribution over the weights 
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Using Bayes’ rule, the posterior over all unknowns could be computed, given the 

defined non-informative prior-distributions. To complete the specification of the 

prior-distribution, one must define hyperpriors over α and noise variance σ
2
. 

These quantities are examples of scale parameters and suitable prior are Gamma 

Distributions [20] 
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Where, β = σ
-2

.Thus, for α and σ it is gamma distribution and for w it is normal 

distribution and after the prior-distributions, Bayes rule is applied.  

 

                            

     
)(

,,,,
,,

22

2

yp

wpwyp
ywp


 

                                 

(12) 

Then, given a new test point (X*), predictions are made for the corresponding 

target (y*), in terms of the predictive distribution : 
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However, computing the solution of the posterior in equation (13) directly is not 

possible, since we cannot perform the normalizing 

integral     222 dσ  dα  dwyσα,w,pσα,w,ypp(y)  . Instead, we decompose the 

posterior as in equation (13) 
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It should be noted that one can compute analytically the posterior distribution over 

the weights since its normalization integral is convolution of Gaussians [20]. 

Thus,to facilitate the solution. The posterior distribution of weights is given by 
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Thus, the posterior over the weights is then obtained from Bayes’rule 
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Eq. (16) has an analytical solution where the posterior covariance and mean are 

  1T2 A
                                           (17) 

        tT2  
                                                (18) 

where we have defined A = (α0, α1… αN) . 

RVM removes weights from the model for which the corresponding i tends to 

infinite. The inputs corresponding to the remaining nonzero w are called relevance 

vectors. RVM uses relevance vectors for final prediction. RVM uses the same 

training dataset, testing dataset, and normalization as used by the GPR model. 

Radial basis function has been adopted as kernel function.  

In MPMR, the relation between input(x) and output(y) is given by the following 

equation.  

                                                



N

i

ii bxxKy
1

,                                             (19) 

Where N is number of datasets, K(xi i and b are output 

the MPMR algorithm. This study uses Is(50), n, Vp, and Rn as input variables. The 

output of MPMR is UCS and E. So,   nps RVnIx ,,,50    and  EUCSy ,  .  

MPMR is an evolution of Minimax Probability Machine Classification (MPMC) 

by constructing a dichotomy classifier [25]. One data set is obtained by shifting all 

of the regression data + along the output variable axis. The other is obtained by 

shifting all of the regression data - along the output variable axis. The following 

two classes of points are crated from the original dataset.  

   idiiii xxxyu ,...,,, 21                                              (20) 

   idiiii xxxyv ,...,,, 21                                               (21) 

 The details of MPMR are given by Strohmann and Grudic [25]. MPMR adopts 

the same training dataset, testing dataset, normalization technique and kernel 

function as used by the RVM. The programs of GPR, RVM and MPMR have 

been implemented by using MATLAB.  
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3      Results and Discussion 

For GPR, the design values of  and  have been determined by trial and error 

approach. For developing ANN model, the trial and error approach has been used 

by Dehghan et al.[12]. The developed GPR gives best performance at =0.01 and  

=0.4 for prediction of E. So, the design values of  and  are 0.01 and 0.4 

respectively. Fig. 1 depicts the performance of training dataset for prediction of E. 

 

          Fig. 1. Performance of training dataset for prediction of E 

 

 

          Fig. 2. Performance of testing dataset for prediction of E 
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The performance of testing dataset has been shown in Fig. 2. The value of 

Coefficient of Correlation(R) has been shown in Fig. 1 and 2.  For a good model, 

the value of R should be close to one.   For prediction UCS, the design values of  

and  are 0.03 and 0.6 respectively.  

 

 

 

                    

                  Fig. 3. Performance of training dataset for prediction of UCS 

 

 

 

 

                  Fig. 4. Performance of testing dataset for prediction of UCS 
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The performance of training and testing dataset has been shown in Fig. 3 and 4 

respectively. The value of R is close to one for prediction of E and UCS also. 

Therefore, the developed GPR proves his capability for prediction of E and UCS.  

For RVM, the trial and error approach has been adopted for determination of 

design value of . The developed RVM gives best performance at =0.2 for 

prediction of E. The performance of training dataset has been shown in Fig. 1. 

Fig. 2 shows the performance of testing dataset. It is observed from Fig. 1 and 2 

that the value of R is close to one for training as well as testing dataset. Therefore, 

the developed RVM proves his credibility for prediction of E. The developed 

RVM gives the following equation for prediction of E.  
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              Fig. 5. Values of w 

 

The value of w has been shown in Fig. 5.  It is clear from Fig. 5 that 14 training 

datasets have non-zero w. So, the developed RVM produces 14 relevance vectors. 

For prediction of UCS, the design value of =0.42. The performance of training 
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and testing has been illustrated in Fig. 3 and 4 respectively. The following 

equation has been presented based on the developed RVM.    
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Table 2: Comparison between the developed models 

 

Fig. 5 illustrates the value of w. For prediction of UCS, the developed RVM 

creates 16 relevance vectors.   

For prediction of E by using the MPMR model, the design values of  and  have 

been computed by trial and error approach. The design values of  and  are 0.003 

and 0.1 respectively. The performance of training and testing has depicted in Fig. 

1 and 2 respectively.  For determination of UCS, the developed MPMR gives best 

performance at =0.001 and =0.3. Fig. 3 and 4 shows the performance of 

training and testing dataset respectively.  The value of R is close to one for 

training as well as testing dataset. So, the developed MPMR predicts E and UCS 

reasonably well.  

The developed GPR, RVM, and MPMR have been compared with the ANN 

models developed by Dehghan et al.[12]. Two ANN models {Generalized 

Regression Neural Network (GRNN) and Feed Forward Network (FANN)} were 

developed. Table 2 shows the comparison. The performance of RVM is slightly 

better than the ANN models. The developed GPR assumes Gaussian data 

distribution. However, MPRM, ANN and RVM do not assume any data 

distribution. The developed MPMR and GPR use only two tuning parameters. 

Whereas, RVM uses only one tuning parameter. ANN uses many tuning 

parameters (number of hidden layers, number of neurons, transfer function, 

number of epochs, etc.). For GPR, RVM and MPMR, the performance of training 

and testing dataset is almost same. So, the developed GPR, RVM and MPMR do 

not show any overtraining. Therefore, the developed GPR, RVM and MPMR 

show good generalization capability. In RVM, maximization of the type-II 

likelihood reduces the chance of overfitting. ANN has no control over future 

prediction. The developed MPMR has control over future prediction. In MPMR, 

the optimization problem is convex. So, the solution of this optimization problem 

is always global minimum. In ANN, the optimization is not always convex. 

Output GRNN FANN GPR RVM MPMR 

UCS(MPa) 0.927 0.964 0.984 0.992 0.914 

E(GPa) 0.877 0.905 0.961 0.964 0.936 
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Compressive 

Therefore, the solution is not always global minimum. GPR and RVM do not 

involve any optimization problem.  

4      Conclusion 

This study describes GPR, RVM, and MPMR for prediction of E and UCS of 

Travertine samples. 30 datasets have been utilized to construct the model.  There 

models (GPR, RVM and MPMR) produce excellent performance. The developed 

RVM gives equations for prediction of E and UCS. MPMR maximizes the 

minimum probability of future predictions being within some bound of the true 

regression function. A comparative study has been presented between the 

developed models and the ANN models. This study shows that the developed 

models can be adopted to model different problems in engineering. 
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