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Abstract 

     The option to steal a significant quantity of important information without the 
owner of the message's consent is provided by keyloggers, which are tools 
designed to record each keystroke made on the computer. Online criminals often 
employ malware-infected software to attack mobile devices like smartphones and 
tablets. In addition, hackers are becoming smarter over time. It will be easier for 
them to add a keylogger to a website than a software program because users must 
download and install it on their devices before accessing it. All these processes, 
however, are not required for a website. Websites can be run on any platform. 
They might pick any user as their target. Thus, social networking sites, internet 
banking, and emails are accessible to hackers. This paper aims to develop a 
machine learning-based model for an in-website keylogger detection for 
platform-independent devices to enhance internet users' privacy and security. 
The study employs Random Forest, LightGBM, and CatBoost as classifiers, and 
uses a hybrid feature selection method, known as Hybrid Ensemble Feature 
Selection (HEFS), which makes the identification process robust and less 
runtime complex. When comparing the selected and full features on the adopted 
classifiers, Random Forest was found to be the best in performance; it 
experienced a minimal accuracy deterioration of 1.59% while achieving a 
massive 84.5% reduction in feature space.  

     Keywords: Keylogger; Machine Learning; Hybrid Feature Selection; LightGBM; 
CatBoost; Random Forest. 

1      Introduction 

Any software that is expressly meant to harm a computer is referred to as malware. 

Malware comes in a variety of forms, such as spyware and ransomware. Malware is a 

tool used by cybercriminals to lock down computers, corrupt files, and obtain illegal 

access to devices. Malware frequently functions covertly, and the user won't become 

aware of infection until damage has already been done to the machine [1]. A type of 
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malware called ransomware is created to extort money from the victim. Using 

ransomware, cybercriminals can encrypt a computer and demand payment to unlock it. 

They can erase the files or damage the hardware if the user doesn't agree with their 

requirements [2]. Another excellent example of malware that threatens IT environments 

is spyware. Spyware can lead to events like identity theft and data breaches. For instance, 

many people now carry out their banking online. Users who unwittingly install spyware 

on their devices risk providing attackers with information about their banking partners, 

account numbers, routing numbers, and credit card details [3]. Malwarebytes outlines the 

various types of spyware, including keyloggers, banking trojans, info-stealers, and 

password stealers [4]. 

 

Figure 1. Types of malwares. 

Keylogger software is an example of spyware that is reasonably simple to install but has 

a very negative impact. Keyloggers are programs that are installed on computers that 

record every keystroke made there. Because of this, hackers can obtain credentials, such 

as usernames and passwords, from the many websites a user visits. Because there is a real 

potential that keyloggers could be installed on public devices, it is best to avoid using 

them for sensitive transactions or to enter usernames and passwords [5]. Fig. 1 

summarizes the relationship between malware, spyware, and keyloggers. 

Over the years, various theories and strategies have been implemented to address the 

broad issue of harmful software. However, none of the current methods are adequate 

when used to address the unique issue of identifying keyloggers. Since signature-based 

solutions are readily circumvented and require isolating and extracting valid signatures 

before identifying a potential threat, their usefulness is limited. The implementation of a 

keylogger is seldom difficult. Even novice programmers may quickly create new 

iterations of current keyloggers, rendering a previously effective signature useless. Even 

when analyzing just keyloggers used for illegal activities in Fig. 2, the development of 

new variations soon renders any signature-based solution useless.  

Feature selection is a method of filtering out the important features, as all the features 

present in the dataset are not equally important. This study shows the usage of a hybrid 

feature selection technique to avoid overfitting and run-time complexity issues while 

maintaining the classifiers' performance. The feature selection technique that will be used 

is called Hybrid Ensemble Feature Selection (HEFS). 
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Figure 2. Increasing varieties of keyloggers are being used in crimes. 

The main objective of this research is to enhance users' privacy and security by 

developing a machine-learning detection model for platform-independent devices. The 

proposed model will use a supervised classification algorithm to analyze the network 

activity of a computer and try to find the existence of a keylogger. A HEFS method with 

Random Forest, LightGBM, and CatBoost classifiers will be utilized to make the 

identification process robust, scalable, and efficient. This research will achieve the 

following objectives:  

• To identify keyloggers by examining the network activities, whether they are 

installed as distinct processes or operate remotely through APIs. 

• To propose a machine learning-based model to detect keyloggers that will operate 

without human intervention. 

• To utilize a robust and scalable hybrid feature selection technique that will help to 

reduce the runtime analysis while detecting the keylogger. 

To identify keyloggers, we will develop and use supervised machine learning-based 

detection techniques. The method keeps track of all network’s transmitted and received 

activities for all active browser processes. In the presence of a strong correlation, 

detection is claimed. Both deployment and execution are possible without any special 

permission. The HEFS method will speed up the classification process while maintaining 

the classifiers' accuracy. 

2      Background 

This section encompasses a detailed background study of keyloggers as well as their 

categories. 

 

2.1      Keyloggers 

Keylogger is software that keeps track of all computer activity. Some activities include 

taking screenshots of every action taken on the computer screen, logging browser 
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activity, and creating distinct keystrokes for every action taken on the computer. Due to 

their diverse traits, keyloggers are challenging for any detecting program to locate.  

Keyloggers were first created during the 1970s [6]. The Union of Soviet Socialist 

Republics (USSR) later developed and utilized it. Researchers used a hardware keylogger 

designed specifically for typewriters. It was known as an "electric glitch" because it 

exploited small changes in the local magnetic flux brought on by the spin and motions of 

the filament to track the movements of IBM Electric typewriters [6]. Perry Kivolowitz 

created the first keylogger on November 17, 1983. Keyloggers get more powerful as 

technology advances and many distinct types of keyloggers are available in the industry 

that was created utilizing technological advancements. Hardware and software 

keyloggers are the two basic categories into which keyloggers fall. 

2.2      Hardware Keyloggers 

Hardware keyloggers may be discreetly installed between the Central Processing Unit 

and the keyboard cord or built into the computer's internal hardware, making them easy 

to operate. However, installing the hardware keylogger requires the cybercriminal to 

have unnoticed physical access to the computer system [7]. 

2.3      Software Keyloggers 

Software keyloggers, as opposed to hardware keyloggers, are simple to install on the 

victim's computer. Software keystroke loggers are computer programs designed to record 

keystrokes on the keyboard. It gathers keyboard occurrences, records them remotely, and 

then sends them to the hacker, who puts the keylogger in place [8]. By utilizing a search 

engine to look for "keyloggers," we discovered a wide variety of software keyloggers. 

However, we may classify them into several groups based on their internal design. 

2.4      Different Types of Software Keyloggers 

Keyloggers based on the kernel may intercept keystrokes as they flow through the kernel 

by gaining root access and blending in with the operating system. These keyloggers 

operate at the kernel level, making them formidable and difficult to find. Keyloggers 

created using this technique may also drive the keyboard. It requires a lot of technical 

coding to design a keylogger in this manner [9]. The keyboard data is captured through 

hooking mechanisms used by API-based keyloggers. Keyloggers that rely on APIs 

connect to active applications' keyboard APIs. This keylogger records keystrokes 

similarly to other apps [10]. This approach is the one most often used to create 

keyloggers. Keyloggers with a memory injection basis operate by swapping memory 

tables connected to system operations and web browsers. By directly injecting malware 

into memory, malware writers can bypass Windows User Account Control [11]. Fig. 3 

depicts the summary of the above discussion. 



 

 

 

Alsubaie et al.                                                                                                          36 

 

 

 

 

 

 

Figure 3. Different types of keyloggers. 

3      Related Work 

Keyloggers are extremely detrimental tools that keep track of every single our computer's 

activity. A keylogger is a code fragment that can be put inside any software and will 

record every keystroke user makes. Our computers are infected with keyloggers due to 

the passive invasion. When someone inputs their login and password on their computer, 

the attacker seeks to get the password. The intruder collects all data provided by the 

victim via a footprinting method, and the information is then used for other unrelated 

reasons [12]. Malware assaults are particularly unpleasant and difficult to identify and 

defend against in the cyber world. The script and malware are both included in a 

keylogger's single software. The keylogger's capability allows it to record every key the 

user presses, save it in a log file, and subsequently email the file to the specified internet 

protocol address. It poses a serious risk to the financial system, which is utilized for daily 

commercial purposes. Several keyloggers' kinds, activities, and features are well outlined 

[13].  

Keylogger detection methods based on software and machine learning haven't been 

proposed in huge numbers. Here are several studies on the evaluation of keylogger 

detection. Pillai demonstrated a modified SVM-based framework to identify keyloggers 

installed on a computer. In their system, 8 open source keyloggers were installed [14]. 

The suggested approach failed to detect 4 of the 8 keyloggers. 

Software keylogger detection employing Anti-Hook, HoneyID, bot identification, and 

dendritic cell algorithm (DCA) was provided by [15] in 2016. These methods are used to 

identify keyloggers on computers. 

Brown presented popular algorithms, such as XOR, GEFeS, and SDM, to classify 

keyloggers in Android [16]. For the identification of "self" and "non-self," Two separate 

detector sets were generated by mAIS. Instances of "self" app detection are distinguished 

from "non-self" app detection by the "non-self" detector sets. The outputs from both 

detector sets are utilized to identify and categorize Android keyloggers. XOR achieved 

88.33% accuracy, whereas GEFeS and SDM combinedly achieved 93.33%. 

Wen L. et al. proposed the supervised learning classifier SVM and the unsupervised 

dimensionality reduction algorithm PCA-RELIEF [17]. The client and server are the two 

essential components of the suggested system. If the application's MD5 value matches 

one of the malicious programs' saved MD5 values, the user interface on the client side 

will notify them. If not, the installed application's estimated MD5 will be sent to the 



 37                                                        Building Machine Learning Model with Hybrid …             

server. The proposed machine learning framework's accuracy and false positive rates 

were 95% and 13.3%, respectively. 

Using 4 separate classifiers, Hatcher proposed a brand-new machine learning-based 

architecture [18]. It was designed to function in a cloud setting where several devices 

may be supported simultaneously. The platform under consideration included an Android 

app, an Analysis Module, a Google Cloud Messaging (GCM), and Security Web Server. 

ZeroR, OneR, and J48 have respective accuracy values of 49.7%, 100%, and 100%. The 

false positive rate for Nave Bayes was noted as 20%, but the accuracy was not given. But 

for J48, Naive Bayes, OneR, and ZeroR, corresponding detection rates are 45%, 83%, 

94.59%, and 90%, respectively. 

Anyone trying to compromise the privacy of smartphone users should focus on Android, 

the world’s most widely used operating system. The innovative dataset presented in [19] 

was gathered in a realistic setting and acquired using a brand-new data-collecting 

approach based on a unified activity list. The information is broken down into three 

primary groups: the first group includes typical smartphone traffic, the second group 

provides traffic data for the deployment of spyware, and the third group represents traffic 

data for the functioning of malware. It was decided to use the random forest classification 

approach to verify the suggested model with this dataset. Binary-class (where the number 

of target variables is two) and multi-class (where the number of target variables is more 

than two) classification are the two approaches used for data classification. Accuracy-

wise, good performance was obtained. For the binary class (where the number of target 

variables is two) and the multi-class (where the number of target variables is more than 

two), the overall average accuracy was 79% and 77%. All dataset elements included in 

the scope of the surveillance included access to social media, phone calls, microphone 

access, OS activity, and keyloggers. 

Innovative cybersecurity methods that recognize harmful Internet Protocol (IP) addresses 

before communication are needed to stop cybercrimes. IP reputation management is 

among the greatest methods. A cyber-physical system's security risks may be profiled 

using IP reputation systems. In their innovative hybrid technique, [20] suggested 

combining Cyber Threat Intelligence, Dynamic Malware Analysis, Data Forensics, and 

Machine Learning (ML). A zero-day attack's related IP notoriety is anticipated in the pre-

acceptance stage using the idea of big data forensics, and its associated zero-day assaults 

are classified using behavioral analysis and the Decision Tree approach. 

Anti-virus software's traditional protection techniques, such as signature-based malware 

detection, cannot keep up with the problems posed by modern malware. Malware 

analysis and detection were represented as machine learning and deep learning problems 

[21]. When creating these models, the writers followed industry standards. They 

overcame the dimensionality curse by utilizing various feature reduction techniques, 

including AutoEncoder. The models created using Random Forest and several layered 

Deep Neural networks were then compared. According to the findings, random forest 

performs better in malware detection than deep neural network models. Random Forest 

attained the maximum accuracy at 99.78%.  

To identify Android malware, the authors of [22] proposed a hybrid strategy utilizing 

machine learning. They built the application's flowchart to learn more about the API. The 

authors developed time-series and Boolean frequency data sets in an original way using 

the API information. Depending on three data sets, three detection models for Android 

malware detection were built, considering API calls, API sequence factors, and API 

frequency. Finally, an ensemble model is built for conformance. Through many trials, 
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they evaluated and contrasted the reliability and accuracy of the detection models. On 

10010 good applications and 10683 bad applications, the trials were run. The findings 

indicate that the detection approach accomplishes a detection accuracy of 98.98% and 

has a high degree of precision and consistency. 

Using four classifiers—ID3, K-Nearest Neighbors, Decision Tree, C4.5 Decision Tree, 

and linear SVM, the authors of [23] demonstrated a supervised classification method for 

identifying Android malware (SVM). The classifiers use the metadata included in the 

apps' bytecode, including information about important API calls, package-level data, and 

potentially harmful arguments called, to identify if an application or software is 

malicious or not. A summarized comparison of methodologies from previous studies is 

enlisted in Table 1.  

Table 1. Comparison of different methodologies from previous studies. 

SN Methodologies Methods Research Topic 

1 Solairaj et al., 2016 

Anit-Hook, HoneyID, Bot 

Detection, and Dendritic Cell 

Algorithm 

PC Keylogger 

Detection 

2 Hatcher et al., 2016 
ZeroR, OneR, Naïve Bayes, and 

J48 

Android Malware 

Detection 

3 Brown et al., 2017 XOR, GEFs, and SDM 
Android Keylogger 

Detection 

4 Wen et al., 2017 
Support Vector Machine and 

PCA-RELIEF 

Android Keylogger 

Detection 

5 Rathore et al., 2018 
Random Forest and Deep Neural 

Network with Autoencoder 

Malware Analysis and 

Detection 

6 Ma et al., 2019 

Control Flow Graph with Deep 

Neural Network, C4.5, and Long 

Short-Term Memory 

Android Malware 

Detection 

7 Pillai et al., 2019 SVM 
PC Keylogger 

Detection 

8 Usman et al., 2021 

Machine Learning, Dynamic 

Malware Analysis, Data 

Forensics, and Cyber Threat 

Intelligence 

Malware Analysis and 

Detection 

9 Qabalin et al., 2022 Random Forest Spyware Detection 

This study provides a machine learning-based model to identify keyloggers operating 

remotely through websites. A thorough analysis of the literature revealed that few studies 

were machine learning-based, and no one had created a detection technique for 

keyloggers operating remotely through websites. Section 4 presents the proposed model. 

 

4      The Proposed Method 

This section describes methods, resources, and datasets used in this study to detect 

keyloggers. An overview of the proposed machine-learning model is shown in Fig. 4. To 

facilitate comprehension, a top-down presenting method was used, in which the key 
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elements and functions are initially presented without going into detail about the 

associated algorithm.  

 

Figure 4. Overview of the proposed machine learning model. 

Data collection, data pre-processing, feature selection, implementation of the grid-search 

algorithm to determine the best parameter for each algorithm, implementation of cross-

fold validation to analyze the classification performance of the ML classifiers, analysis of 

various ML algorithms, and selection of the best algorithms more thoroughly for 

keylogger detection will all be part of the research methodology. 

The initial step in data pre-processing is to look for duplicate occurrences. We will easily 

eliminate duplicate entries and leave only the unique ones if any are identified. Then, if 

there are too many NULL entries, we can interpolate those values; otherwise, we can 

drop them. 

We will encode the labels if the dataset contains any string values. We will also examine 

class distribution to determine whether the dataset is balanced. We can use some 

oversampling or under-sampling approaches if the dataset is unbalanced. Then, to reduce 
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the number of features and prevent the machine learning classifiers from overfitting, we 

will feed full feature set data into the HEFS feature selection approach. For later usage, 

the transformed dataset will be stored in CSV format. GridSearch will choose the 

classifier parameter that will yield the best results for each technique, and cross-

validation will make sure that our model iterates over the whole dataset to assess its 

classification-related resilience. The ML classifiers are evaluated using classification 

metrics following training and testing. This procedure will keep going until GridSearch 

determines the classifiers' ideal parameter. Then, we compared the three classifiers and 

selected the most effective model for the keylogger detection task.  

4.1      Hybrid Ensemble Feature Selection Technique (HEFS) 

The following is a concise overview of the suggested HEFS model. As indicated in Fig. 

5, the SSN and FMZ abbreviations should be used to represent the N-th partition and Z-

th filter measure, respectively. Before being separated into N divisions by stratified 

subsampling, the whole dataset is randomly selected. To make the samples in each 

partition more evenly distributed, randomization corresponds to the relocation of the 

sample rows. 

Figure 5. Overview of HEFS. 

The filter measure FMZ calculates the filter measure values for a dataset partition SSN 

using the partition's raw attribute values. As soon as the filter measure values are ordered, 

they are sent on to the next step, where the CDF-g method generates the cut-off rank for 

the features. A list of feature cut-off rankings is generated for each dataset division using 

filter measure FMZ after repeating this process for N = 1, 2..., N, a list of feature cut-off 

ranks {τ1, Z, τ2, Z..., τJ, Z} is created for each dataset partition by using filter measure 

FMZ. The CDF-g approach is broadened into a hybrid ensemble structure comprising 

data perturbation and function perturbation techniques to increase the robustness of 

baseline features and lessen the generalization problem. While function perturbation 

includes using several filter measures within the same dataset, data perturbation implies 

subsampling the dataset into distinct segments. The whole feature selection architecture 

was referred to as the Hybrid Ensemble Feature Selection by [24]. 
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 4.2      Classification Algorithms 

In this section, the machine learning classification algorithms employed in this paper for 

detecting keyloggers are described in detail. 

4.2.1      CatBoost 

Dorogush proposed CatBoost, a novel gradient-boosting technique that reliably employs 

categorical variables with the minimum percentage of information loss [25]. Different 

from previous gradient-boosting methods is CatBoost. Target leaking is initially 

addressed using sorted boosting, a useful variation of gradient boosting techniques. This 

technique also performs well with small datasets. CatBoost can also control category 

variables. This handling, which comprises converting the initial categorical variables to 

one or more numerical values, is often completed during the pre-processing stage. 

Additionally, CatBoost can be utilized successfully with various data forms and types. 

CatBoost has recently been used in the financial industry with several different data 

formats, including time series data [26]. A new binary feature for each category replaces 

the original variable. Using random permutations to estimate leaf values when choosing 

the tree structure, the algorithm, according to [26], avoids overfitting by conventional 

gradient boosting algorithms. CatBoost's main predictor is a binary decision tree. 

4.2.2      Random Forest 

     A very well-known ML classification algorithm that has been extensively used to 

solve several classification problems is named Random Forest [27]. Random Forest uses 

decision trees and ensemble architecture to improve classification accuracy. Voting takes 

place between each tree, and each variable is then assigned to the output class that is 

most likely to be created. The output function is derived by calculating the mean as 

follows: 

                                               (1) 

where Jack represents each tree's probability distribution, and k represents an 

instance of the test set. For building a framework of decision trees to handle complicated 
outliers, Random Forest is a reasonable solution. Random forest was further encouraged 
because it was easy to construct and understand, which enhanced predicting. 

4.2.3      LightGBM 

A data model called LightGBM is based on Microsoft's GRADIENT BOOSTING 

DECISION TREE (GBDT), proposed in 2017. Like other boosting algorithms, GBDT 

integrates weak classifiers to create an effective learner. The Gradient Boosting Decision 

Tree approach can only be utilized with regression trees since each tree learns the 

inferences and variances of all previous trees in the process. The variation of each 

projected outcome and the target value is used as the goal of further learning, creating a 

current residual regression tree. The decision trees' results are combined to create the 

final expected output. Despite the good learning impacts that Gradient Boosting Decision 

Tree has had on various machine learning applications. Currently, the LightGBM 

algorithm has been proposed. It significantly increases forecasting speed while 

maintaining prediction accuracy and uses less memory. Creating a decision tree 

frequently requires using the traditional GBDT algorithm. 
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5      Performance Evaluation  

In this section, we discussed the dataset, performance metrics, and methodology 

evaluation, as well as the results and discussions, are presented. 

5.1      Dataset Descriptions 

This study utilizes a publicly available keylogger dataset licensed under GNU Free 

Documentation to carry out the experiment. This section describes the properties and a 

few statistics related to the used datasets. The dataset has been viewed over 3500 times 

and downloaded 245 times. The dataset originated from Canadian Institute for 

Cybersecurity (CIC) website (Keylogger Detection, 2021) [28]. It contains 523617 

samples, 309415 benign samples and 214202 keylogger samples, and 85 features. Table 

2 contains the full information regarding the dataset. 

Table 2. Detail description of the keylogger dataset. 

Associated 

Task 

Number 

of 

Instances 

Number 

of 

Features 

Attribute 

Characteristics 

Keylogger 

Samples 

Benign 

Samples 

Published 

Date 

Classification 523617 85 
Discrete & 

Continuous 
214202 309415 

September 

2021 

5.2      Technology Used 

In this study research, a hybrid feature selection method is proposed, and Python, which 

has many source libraries, is used to converse machine learning algorithms. Additionally, 

it gives the capability of carrying out the classification operation with high Accuracy 

using fundamental characteristics. The following procedures are used to test the general 

methodology: 

Software packages: This experiment used the Jupyter Notebook. It is a web-based 

interactive computing environment. Many popular data science languages, including 

Python, Julia, Scala, R, and others, may be used with the Jupyter Notebook. Python was 

selected as the programming language because of its comprehensive machine-learning 

packages, which include Sci-Kit Learn, Pandas, Numpy, Matplotlib, Seaborn, etc. 

Workstation: A workstation with the following configuration was utilized to 

experiment. 

• Operating System: macOS Monterey (Version 12.6) 

• Processor: Intel Core i9 @2.3 GHz 

• Memory: 16 Gigabytes of Memory 

• Secondary Storage: 1TB of SSD 

• Graphics Card: AMD Radeon Pro 5500M 8GB 
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5.3      Performance Metrics 

The proposed systems' effectiveness will be evaluated using a variety of performance 

criteria, including Accuracy, Precision, Recall, and F1-score. This section has gone into 

detail about those performance metrics. 

Accuracy is an established classification evaluation statistic. It is recognized as the 

percentage of properly categorized instances to all instances, compared to the error value, 

which employs wrongly classified samples rather than correctly identified ones. A 

mathematical formula for Accuracy is shown in Equation 2. 

 

                                   (2) 

 

The ratio between positively predicted instances to all instances in the true positives class 

is known as Recall. The recall question is how many keylogger instances have the 

machine learning system properly labeled. Another name for Recall is sensitivity. 

Equation 3 illustrates the mathematical formula for Recall or sensitivity. 

                                                   (3) 

In terms of positive instances, precision is the proportion of accurately projected 

instances to all expected positive instances. This measure answers the question of how 

many instances listed as keyloggers are true. Low false positive rates are associated with 

high precisions value. Equation 4 illustrates the precision formula in mathematics. 

                                                             (4) 

The harmonic mean between Precision and Recall is considered an F1-Score. Hence, this 

metric accounts for false negatives (FN) and false positives (FP). Although it is not 

conceptually as simple to comprehend as Accuracy, the F1 Score is often more helpful 

than Accuracy, particularly if any dataset has unbalanced class labels. The most excellent 

Accuracy is achieved when the costs of FP and FN are comparable. Including both 

Precision and Recall is preferable if the costs of FP and FN vary significantly. Equation 5 

illustrates the mathematical formula for Accuracy. 

                                                 (5) 

5.2      Evaluation of Methodology 

Data pre-processing is an important stage before insertion into a machine learning 

algorithm. The data was first stored in a data frame using Python code. We have used the 

Hybrid Ensemble-based Feature Selection (HEFS) technique for feature selection. A 

hybrid ensemble-based feature selection technique automatically chooses the cut-off rank 

value from filtered measures evaluated by the Information Gain filter method. The 

pseudocode for this feature selection technique is mentioned in detail in [36]. The cut-off 

rank value determined automatically by the CDF-g is 0.159262.  

 

The feature subset chosen by HEFS is enlisted in Table 3. The dataset contains 84 

features which are considered a full feature set. After applying HEFS, the features are 

reduced to 13. Features with information gain value less than 0.159262 are discarded. 

Table 3. Feature subset after applying HEFS. 
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Number of 

features in Full 

Feature Set 

Number of 

features in feature 

subset after HEFS 

Features in the feature subset 

84 13 

' Source Port', ' Flow Duration', 'Flow Bytes/s', 

' Flow Packets/s', 

' Flow IAT Mean', ' Flow IAT Std', ' Flow IAT 

Max', ' Flow IAT Min', 

'Fwd IAT Total', ' Fwd IAT Mean', ' Fwd IAT 

Max', 'Fwd Packets/s', 

' Bwd Packets/s' 

Table 4 illustrates the parameter lists and suitable parameters determined by GridSearch 

and their corresponding mean accuracy from 5-fold cross-validation. 

Table 4. Optimal hyperparameter values for the classification algorithm. 

Classification 

Algorithms 

Hyperparameter 

Name 

Hyperparameter 

Values 

Optimal 

Hyperparameter 

value 

Mean 

Accuracy 

on 5-fold 

Cross 

Validation 

Random 

Forest 

n_estimators 
20, 50, 100, 110, 

120, 130, 140, 150 
110 

0.9524 

criterion 'gini', 'entropy' ‘gini’ 

LightGBM 

learning_rate 
0.01, 0.1, 0.3, 0.4, 

0.5, 0.6, 0.8, 0.9 
0.9 

0.7128 

n_estimators 
20, 50, 100, 120, 

130, 150, 160, 180 
130 

CatBoost 

depth 
4, 5, 6, 7, 8, 9, 10, 

12, 14, 15, 16, 17 
15 

0.9135 

learning_rate 

0.001, 0.01, 0.02, 

0.03, 0.04, 0.1, 

0.3, 0.5, 0.7, 0.9 

0.9 

 

6      Research Results  

This section described the performance of the machine learning methods using both the 

full feature set and selected features. The accuracy, precision, re-call, F1-score, and AUC 

score of algorithms are also compared in this section. The K-fold cross-validation 

technique was used to train and test machine learning classification algorithms like 

Random Forest, LightGBM, and CatBoost. The GridSearch method was used to find the 

classification algorithm's optimal hy-perparameters. The effectiveness of various 

machine learning methods is covered in the next sections. 

6.1      Results of Random Forest 

Random Forest provided the following results for selected features and the full feature 

set. Table 5 and Fig. 6 show the detailed performance of Random Forest both on selected 

features and the full feature set: 



 45                                                        Building Machine Learning Model with Hybrid …             

Table 5. Detailed performance results of random forest on both selected features and full 
feature set. 

Classifier Features Accuracy Precision Recall 
F1-

Score 

AUC 

Score 

Random 

Forest 

Selected Features 0.9612 0.9608 0.9588 0.9598 0.990 

Full Feature Set 0.9771 0.9771 0.9755 0.9763 0.996 

Table 5 shows the evaluation metrics for the Random Forest classifier using two different 

feature sets: "Selected Features" and "Full Feature Set". 

For the "Selected Features" set, the Random Forest classifier achieved an accuracy of 

0.9612, a precision of 0.9608, a recall of 0.9588, an F1-score of 0.9598, and an AUC 

score of 0.990. For the "Full Feature Set", the Random Forest classifier achieved a higher 

accuracy of 0.9771, a precision of 0.9771, a recall of 0.9755, an F1-score of 0.9763, and 

a higher AUC score of 0.996. It appears that using the "Full Feature Set" resulted in 

better performance for the Random Forest classifier in this context. However, it's 

important to note that this may not always be the case, as the optimal feature set can 

depend on the specific dataset and classification task at hand. 

 

Figure 6. Detailed performance result graph of random forest on both selected features 

and full feature set. 

When comparing selected and full features on Random Forest, the selected features only 

experienced a minimal accuracy deterioration of 1.59% while achieving a massive 84.5% 

reduction in feature space. In short, the evaluation results have validated the effectiveness 

of using the Hybrid Ensemble Feature Selection technique. 

6.2      Results of LightGBM 

The hyperparameters for the LightGBM classifier are likewise specified in the 'sklearn' 

module, and LightGBM was implemented in Python. The confusion matrix obtained 

from the LightGBM classification method is shown in the figure with and without 

selected features. The results from LightGBM for both the full feature set and the 

selected features are presented in Figures 5.6 and 5.7 and will be considered for analysis.  

Table 6 and Fig. 7 show the detailed performance of LightGBM both on selected features 

and the full feature set: 

Table 6. Detailed performance results of LightGBM on both selected Features and the 
full features set. 
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Classifier Features Accuracy 
Precisi

on 
Recall 

F1-

Score 

AUC 

Score 

LightGBM 
Selected Features 0.7134 0.7112 0.6829 0.6867 0.768 

Full Feature Set 0.7136 0.7461 0.6658 0.6638 0.777 

Table 6 shows the evaluation metrics for the LightGBM classifier using two different 

feature sets: "Selected Features" and "Full Feature Set". For the "Selected Features" set, 

the LightGBM classifier achieved an accuracy of 0.7134, a precision of 0.7112, a recall 

of 0.6829, an F1-score of 0.6867, and an AUC score of 0.768. For the "Full Feature Set", 

the LightGBM classifier achieved a slightly higher accuracy of 0.7136, a higher precision 

of 0.7461, a lower recall of 0.6658, a lower F1-score of 0.6638, and a higher AUC score 

of 0.777. 

It appears that the two feature sets resulted in similar overall performance for the 

LightGBM classifier, with the "Full Feature Set" performing slightly better in terms of 

precision and AUC score, but worse in terms of recall and F1-score. As with the previous 

example, the optimal feature set can depend on the specific dataset and classification task 

at hand. 

 

Figure 7. Detailed performance results graph of LightGBM on both selected features set 

and full feature set. 

Selected features on LightGBM achieved a staggering 84.5% reduction in feature space 

while only suffering a modest accuracy degradation of 0.02% compared to complete 

features. The usefulness of applying the Hybrid Ensemble Feature Selection approach 

has, in brief, been proven by the assessment outcomes. 

6.3      Results of CatBoost 

Table 7 and Fig. 8 show the detailed performance of CatBoost both on selected features 

and the full feature set: 

Table 7. Detailed Performance Results of CatBoost on both Selected Features and the 
Full Feature Set. 

Classifier Features Accuracy Precision Recall 
F1-

Score 

AUC 

Score 

CatBoost Selected 0.9251 0.9250 0.9197 0.9221 0.970 
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Features 

Full Feature 

Set 
0.7691 0.7837 0.7375 0.7449 0.846 

Table 7 shows the evaluation metrics for the CatBoost classifier using two different 

feature sets: "Selected Features" and "Full Feature Set". For the "Selected Features" set, 

the CatBoost classifier achieved a higher accuracy of 0.9251, a higher precision of 

0.9250, a higher recall of 0.9197, a higher F1-score of 0.9221, and a higher AUC score of 

0.970. For the "Full Feature Set", the CatBoost classifier achieved a lower accuracy of 

0.7691, a lower precision of 0.7837, a lower recall of 0.7375, a lower F1-score of 0.7449, 

and a lower AUC score of 0.846. It appears that using the "Selected Features" set resulted 

in much better performance for the CatBoost classifier in this context, with higher scores 

across all evaluation metrics. However, as always, the optimal feature set can depend on 

the specific dataset and classification task at hand. 

 

Figure 8. Detailed performance result graph of CatBoost on both selected features set 
and full feature set. 

On CatBoost, while comparing selected and full features, the selected features gained a 
maximum accuracy boost of 15.6% despite massively reducing the feature space by 
84.5%. In other words, the evaluation's findings have shown that the hyperparameter 
tuning algorithm and Hybrid Ensemble Feature Selection approach is successful. 

6.4      Comparative Analysis of Machine Learning Algorithms 

Table 8 shows the combined results of the performance of all three classifiers on the 
selected and full features set. 

Table 8. Performance comparison of all machine learning algorithms on the selected 
feature set and full feature set. 

Classifier Features Accuracy Precision Recall 
F1-

Score 

AUC 

Score 

Random Forest 

Selected 

Features 
0.9612 0.9608 0.9588 0.9598 0.990 

Full Feature Set 0.9771 0.9771 0.9755 0.9763 0.996 



 

 

 

Alsubaie et al.                                                                                                          48 

LightGBM 

Selected 

Features 
0.7134 0.7112 0.6829 0.6867 0.768 

Full Feature Set 0.7136 0.7461 0.6658 0.6638 0.777 

CatBoost 

Selected 

Features 
0.9251 0.9250 0.9197 0.9221 0.970 

Full Feature Set 0.7691 0.7837 0.7375 0.7449 0.846 

Table 8 shows that the Random Forest classifier has the highest accuracy and AUC score 
among the three models. When using the full feature set, it achieves an accuracy of 
0.9771 and an AUC score of 0.996. The precision, recall, and F1-score are also quite 
high, indicating that the model is performing well in both identifying positive and 
negative cases. 

On the other hand, the LightGBM model appears to be underperforming, with an 
accuracy of only 0.7134 when using the selected features and 0.7136 when using the full 
feature set. Its precision, recall, and F1-score are also lower than the other two models, 
suggesting that it may not be as effective in identifying positive and negative cases. 

The CatBoost model is performing reasonably well, with an accuracy of 0.9251 when 
using the selected features and 0.7691 when using the full feature set. While its 
performance is not as high as the Random Forest model, it is still better than the 
LightGBM model. The precision, recall, and F1-score of CatBoost are also relatively 
high, indicating that it is performing well in identifying both positive and negative cases.  

6.4.1 Comparison of Precision Metric  

Precision refers to showing the learning ability of a machine learning classification 

algorithm and how correctly it can detect positive instances. It shows the ratio between 

all positives and true positive (TP) instances. Fig. 9 shows that Random Forest achieved 

the highest 96.08% precision value for the selected feature set compared to the other two 

classifiers. When comparing selected and full features on Random Forest, the selected 

features only experienced a minimal precision deterioration of only 1.03%. The weakest 

performer among all the classifiers for both the selected and full feature sets was 

LightGBM. CatBoost achieved quite a better result (approximately 14.13% better) for the 

selected feature compared to the full feature set. This improvement is mostly due to 

optimal hyperparameters searched for by GridSearch. 

 

Figure 9. Precision comparison on both selected features set and full feature set. 
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6.4.2 Comparison of Accuracy Metric  

Accuracy refers to the learning ability of the machine learning classification algorithm 

and how correctly it can detect the benign and keylogger instances out of the total 

instances. Fig. 10 shows that Random Forest achieved the highest 96.12% accuracy value 

for the selected feature set compared to the other two classifiers. When comparing 

selected and full features on Random Forest, the selected features only experienced a 

minimal accuracy deterioration of only 1.59%. The weakest performer among all the 

classifiers for both the selected and full feature sets was LightGBM. CatBoost achieved 

quite a better result (approximately 14.14% better) for the selected feature compared to 

the full feature set. This improvement is mostly due to optimal hyperparameters searched 

for by GridSearch. 

 

Figure 10. Accuracy comparison on both selected features set and full feature set. 

6.4.3 Comparison of Recall or Sensitivity Metric  

The ratio between positively predicted instances to all instances in the true positives class 

is known as Recall. The recall question is how many keylogger instances have the 

machine learning system properly labeled. Compared to the other two classifiers, 

Random Forest obtained a recall value of 95.88% for the selected feature set, as shown in 

Fig. 11. On Random Forest, the difference between recall degradation for the full and 

selected features was just 1.67%. CatBoost significantly outperformed the full feature set 

in terms of performance (by around 18.22% better) for the selected feature. This 

improvement is mostly attributable to GridSearch's use of optimal hyperparameters. 

LightGBM had the worst performance of all the classifiers for the entire feature set and 

the selected feature set. 

 

Figure 11. Recall comparison on both the selected features set and the full feature set. 

6.4.4 Comparison of F1-Score 
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The harmonic mean between Precision and Recall is considered an F1-Score. Hence, this 

metric accounts for false negatives (FN) and false positives (FP).  Fig. 12 shows that 

Random Forest achieved the highest 95.98% F1-score for the selected feature set 

compared to the other two classifiers. When comparing selected and full features on 

Random Forest, the selected features only experienced a minimal f1-score deterioration 

of only 1.65%. CatBoost achieved quite a better result (approximately 17.72% better) for 

the selected feature compared to the full feature set. This improvement is mostly due to 

optimal hyperparameters searched for by GridSearch. The weakest performer among all 

the classifiers for both selected and full feature sets was LightGBM. 

 

Figure 12. F1-score on both selected features set and full feature set. 

6.4.5 Comparison of AUC-Score 

Area Under the Curve (AUC) quantifies a classifier's capacity to differentiate between 

target variables. The better the model distinguishes between positive and negative 

classifications, the greater the Area Under the Curve score. Fig. 13 shows that Random 

Forest achieved the highest 99% AUC score for the selected feature set compared to the 

other two classifiers. When comparing selected and full features on Random Forest, the 

selected features only experienced a minimal AUC score deterioration of only 0.06%. 

CatBoost achieved quite a better result (approximately 12.4% better) for the selected 

feature compared to the full feature set. This improvement is mostly due to optimal 

hyperparameters searched for by GridSearch. The weakest performer among all the 

classifiers for both selected and full feature sets was LightGBM. 

 

Figure 13. AUC Score on both selected features set and full feature set. 

6.5 Summary of Comparative Analysis 
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After comparing different metrics and their corresponding results derived from 

classification algorithms, it has been learned that Random Forest outperformed the other 

two classification algorithms in every classification metric. The performance of the 

CatBoost classifier increased significantly due to the use of GridSearch for tuning its 

hyperparameters. CatBoost’s performance increased by 12-18% in some metrics. When 

comparing selected and full features on Random Forest, the selected features only 

experienced an overall accuracy deterioration of less than 1.7% while achieving a 

massive 84.5% reduction in feature space. The weakest classifier was LightGBM. 

Therefore, the Random Forest classifier with Hybrid Ensemble Feature Selection 

technique is recommended for the keylogger detection task. 

7. Conclusion and Future Work 

The usage of keyloggers, which deceive users into doing activities that give attackers a 

chance to victimize the user and steal desired information from him, is growing daily. 

The attacker gains access to sensitive information by breaking into the organization’s 

systems. In cyber security attacks, keyloggers become vital. This study assessed a hybrid 

ensemble feature selection technique with machine learning algorithms with a publicly 

available keylogger detection dataset. The dataset was processed and cleaned using 

Python in the Google Colab platform. Machine learning classifiers such as Random 

Forest, LightGBM, and CatBoost were trained and tested with the cross-validated data. 

Random Forest was found to be the best in the performance. CatBoost was found to be 

moderately good, CatBoost’s performance increased by 12-18% in some metrics, but 

LightGBM performed worst. Random Forest experienced a minimal accuracy 

deterioration of 1.59% while achieving a massive 84.5% reduction in feature space. 

Exploration in these fields is necessary for future developments to improve the efficiency 

of keylogger detection in real time using neural networks and deep learning developed on 

multiple datasets. A study of adaptive feature selection by machine learning techniques is 

necessary since preset features may not always function as intended, and attackers may 

use exploits to evade them. Additionally, research is needed for continual learning so that 

the model can continuously learn, evolve, and classify keyloggers based on their 

divergent actual characteristics. Depending on the situation and surroundings, the number 

of features should be changed or added. To perform keylogger detection using machine 

learning and a hybrid ensemble-based feature selection approach, this work contributes to 

cybersecurity. 
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