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Abstract 

      In this paper we introduce a new labeling of graphs called         
d -edge sum labeling and study the same as a vertex coloring 
problem. Let NGEl )(:  be a labeling of the edges of a graph G  
by positive integers. Define )(),(=)(

)(),(
udvuluc

GEvu
 

, where )(ud  
denotes the degree of u . We call l  a d -edge sum labeling if 

)()( vcuc  , for every pair of adjacent vertices u  and v  in G . The 
d -edge sum number of a graph G , denoted by )(Gds , is the least 
positive k  such that G  has a d -edge sum labeling with  k,1,2,  
as the set of labels. In this paper we obtain )(Gds  for some special 
classes of graphs. 

 Keywords: Butterfly network, d-edge sum, Edge-labeling, Hhypertree, slim tree. 

1      Introduction 

Graph coloring is one of the most studied subjects in graph theory. In 2004, 

Karonski et al.  [6] have stated that a weighting of the edges of a graph with 

integer weights gives rise to a weighting of the vertices, the weight of a vertex 

being the sum of the weights of its incident edges. The number of consecutive 

integer weights needed so that all vertices receive different weights has been 

called the irregularity strength of a graph. Weighting in other words denotes the 

label of each edge. Karonski, Luczak and Thomason  [6] initiated the study of 

proper labeling. A proper labeling of a graph is an assignment of integers to some 

elements of the graph, which may be the vertices, the edges, or both of them, such 

that we obtain a vertex coloring via the labeling, such that adjacent vertices do not 

receive the same color, usually addressed as proper vertex coloring. Graph 

coloring is used in various research areas of computer science such as data mining, 

image segmentation, clustering, image capturing, networking and applications 

such as guarding an art gallery, physical layout segmentation, scheduling  [3], 

biprocessor tasks, frequency assignment, map coloring, GSM mobile phone 

networks, exam timetabling and student timetabling  [8]. In this paper we 
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introduce a new labeling called d -edge sum labeling and compute d -edge sum 

number of complete bipartite graphs and certain networks such as wheels, 

butterfly and hypertrees. 

2     d-Edge sum labeling problem 

Karonski et al. introduced edge-labeling by sum  [6].  

     Definition 2.1 [6] We call a mapping  kGEf ,1,2,)(:  , an edge-labeling 

by sum if for all )(GVu , ),(=)(
)(),(

vufuc
GEvu 

 is a proper vertex coloring of 

G .  

In this paper we introduce a new labeling which is equivalent to edge-labeling by 

sum for regular graphs.  

     Definition 2.2 Let  kGEl ,1,2,)(:   be a labeling of the edges of a graph 

G  by positive integers. Define )(),(=)(
)(),(

udvuluc
GEvu

 
, where )(ud  

denotes the degree of u . We define the labeling l  as d -edge sum labeling if 

)()( vcuc  , for every pair of adjacent vertices u  and v  in G . The d -edge sum 

number of a graph G , denoted by )(Gds , is the least positive integer k  such that 

G  has a d -edge sum labeling with  k,1,2,  as the set of labels.  

We observe that not every d -edge sum labeling is edge-labeling by sum. Fig. 

)1(a  illustrates d -edge sum labeling of a graph G . However this labeling is not 

an edge-labeling by sum; see Fig. )1(b . Conversely, not every edge-labeling by 

sum induces d -edge sum labeling. Fig. )1(c  illustrates edge-labeling by sum of a 

graph H . However this labeling is not a d -edge sum labeling; see Fig. )1(d . 

 

Fig. 1: The number within the paranthesis represents )(uc   (a) d -edge sum    

labeling of a graph G   (b) Edge-labeling by sum of a graph G   (c) Edge-labeling 

by sum of a graph H   (d) d -edge sum labeling of a graph H . 

The following result is an easy observation. 

     Theorem  2.3  For a graph G , 1=)(Gds  if and only if no two adjacent 

vertices in G  have the same degree.  
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3      Some classes of graphs 

3.1      Complete bipartite graph 

     Definition 3.1.1 A graph G  is bipartite with bipartition ),( YX  if 

YXGV =)( , =YX   and every edge in G  has one end in X  and the other 

end in Y . G  is a complete bipartite graph if every vertex in X  is joined to every 

vertex in Y  and is denoted by nmK ,  if mX |=|  and nY |=| .  

 
 

Fig.  2:  (a) d -edge sum labeling of 5,2K   (b) d -edge sum labeling of 8W  

(c) d -edge sum labeling of 5W  

   

3.1.2      Algorithm d -edge sum nmK ,  

:Input A complete bipartite graph nmK ,  with bipartition ),( YX , mX |=| , nY |=| , 

2 nm , mn 56   when m  is even and 156  mn  when m  is odd. 

:Algorithm  

Step 1.  Order the vertices of X  from left to right as m1,2,..., . 

Step 2.  Label the edges incident on thi  vertex of X , i  odd, as 1. 

Step 3.  Label the edges incident on thi  vertex of X , i  even, as 2 . 

:Output  2=)( ,nmds K  

:  scorrectnesofProof  Let )(),(= ,nmKEvue   with u  in X  and v  in Y . All 

edges incident at u  are labeled either 1 or 2 . Hence nuc 2=)(  or n3 , according 

as u  is an odd labeled vertex or an even labeled vertex of X  respectively. On the 

other hand, when m  is even, 
2

5
=2)

2
(1)

2
(=)(

m
m

mm
vc   and when m  is 

odd, 
2

15
=12

2

1)(
1

2

1)(
=)(







 m
m

mm
vc . When nuc 2=)( , if 
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2

5
=)(

m
vc , then )(=)( vcuc  implies nmn 55=4  , a contradiction. If 

2

15
=)(

m
vc , then )(=)( vcuc  implies 1515=4  nmn , a contradiction. 

Therefore in either case, )()( vcuc  . On the other hand, when nuc 3=)( , 

)()( vcuc   only when mn 56  , m  even and 156  mm , m  odd. See Fig. )2(a .  

      Theorem 3.1.3 Let nmK ,  be the complete bipartite graph with 2 nm , 

mn 56   for m  even and 156  mn  for m  odd. Then 2=)( ,nmds K .  

3.2      Wheel graph 

     Definition 3.2.1 A wheel graph denoted by nW  is a graph with n  vertices 

4n  and 1)2( n  edges, formed by connecting a single vertex called centre 

vertex to all vertices of an 1)( n -cycle.  

3.2.2      Algorithm d -edge sum nW  

:Input  Wheel graph nW , 5n   

:Algorithm  

Step 1.  For n  odd, 5n , label the cycle edges as 1 and the edges incident at the 

central vertex alternately as 1 and 2 . 

Step 2.  For n  even, 6n , label all the cycle edges except one edge as 1, and the 

unlabeled edge say ),( yx  as 2. Label the edges incident at the central vertex w  

alternately as 1 and 2  beginning with labeling edges ),( wx  as 1 and ),( wy  as 2 .  

:Output  2=)( nds W  for 5n . 

:  scorrectnesofProof  Let nW  be a wheel graph with n  vertices, where 5n . 

Case :1  n  is even, 6n : Let )(),(= nWEvue  . If u  is the centre vertex then 

53=12)2(2)(=)(  nnnuc  and 6,7=)(vc  or 8 . Therefore )()( vcuc  . 

If ),( vu  is a cycle edge and ),(=),( yxvu , then 7=)(uc  and 8=)(vc , whereas 

all the other values of )(uc  are alternating 6  and 7  on the cycle. Thus 

)()( vcuc  , )(),(  nWEvu  . See Fig. )2(b . 

Case :2  n  is odd, 5n : Let )(),(= nWEvue  . If u  is the centre vertex and v  

is a cycle vertex whose edge is labeled 1 or 2 , 

then
2

1)5(
=1)(

2

1
2

2

1
=)(










 








  n
n

nn
uc  and 6=)(vc  or 7 .  
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Hence )()( vcuc  , )(),(  nWEvu  . Further if ),(= vue  is an edge where both 

u  and v  are cycle vertices, then 6=)(uc  and 7=)(vc . See Fig. )2(c . 

     Theorem 3.2.3 The wheel graph nW  admits d -edge sum labeling with 

2=)( nds W , for 5n .  

3.3      Butterfly networks 

     A most popular bounded - degree derivative network of the hypercubes is 

called a butterfly network.  

     Definition 3.3.1  [7] The r - dimensional butterfly network, denoted by )(rBF , 

has a vertex set  riQVxixV r  ),0(:);(= . Two vertices );( ix  and );( jy  

are linked by an edge in )(rBF  if and only if 1= ij  and either 

)(i  yx = , or  

)(ii  x  differs from y  in precisely the thj  bit. 

For yx = , the edge is said to be a straight edge. Otherwise, the edge is a cross 

edge. For fixed i , the vertex );( ix  is a vertex on level i .  

     Remark 3.3.2 All edges in )(rBF  join a vertex in level i  with a vertex in level 

1i , 10  ri .  

  

 
 Fig.  3:   d -edge sum labeling of BF( 4 ) 

3.3.3      Algorithm d -edge sum )(rBF  

 :Input  r - dimensional butterfly network )(rBF , 1r   

:Algorithm  
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Label the edges of )(rBF  as follows: 

Step 1.  When r  is even, label the straight edges and cross edges between level i  

and 1i  and those between 1i  and 2i  as 1  whenever 4  0 modi   and as 2  

whenever 4  2 modi  , ri 0 . 

Step 2.  When r  is odd, repeat the same labeling for 30  ri  and label all the 

edges between levels 1)( r  and r  as 1  whenever 4  1modr   and as 2  

whenever 4  3modr  .  

:Output  2=))(( rBFds  for 1r . 

:  scorrectnesofProof  The r -dimensional butterfly network )(rBF , 1r , is a 

biregular graph with vertices of degree 2  at levels 0  and 1r  and all other 

vertices of degree 4 . The algorithm d -edge sum )(rBF  ensures that if each thi  

level vertex 10,  ri , has two edges labeled as 1 and two edges labeled as 2  

incident at it, then each thi 1  level vertex 10,  ri  has all four edges incident 

at it labeled 1 or all four edges labeled 2 . Maximum value of )(uc , when u  is in 

level 0  or 1r  is 6 . Minimum value of )(vc , when v  is in level 1  or r  is 8 . 

This implies )()( vcuc  , )(),( GEvu  . See Fig. 3. 

     Theorem 3.3.4 The r -dimensional butterfly network )(rBF  admits d -edge 

sum labeling and 2=))(( rBFds .  

3.4      Benes network 

     Definition 3.4.1 [7] The r -dimensional benes network denoted by )(rBB  

consists of back-to-back butterfly networks. The )(rBB  has 12 r  levels, each 

with r2  vertices. The middle level in )(rBB  is shared by these butterfly networks. 

Applying algorithm d -edge sum )(rBF  for levels 0  to 12 r  of )(rBB  we 

arrive at the following result. 

     Theorem 3.4.2 The r -dimensional benes network )(rBB  admits d -edge sum 

labeling and 2=))(( rBBds .  

4      Some classes of tree derived networks 

A tree is a connected acyclic graph. Trees are the most fundamental graph 

theoretic models used in many fields such as information theory, operations 

research, theory of electrical and design networks. 
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4.1      Hypertree 

A hypertree is an interconnection topology for incrementally expansible 

multicomputer systems, which combines the easy expansibility of tree structures 

with the compactness of the hypercube; that is, it combines the best features of the 

binary tree and the hypercube. These two properties make this topology 

particulary attractive for implementation of multiprocessor networks of the future, 

where a complete computer with a substantial amount of memory can fit on a 

single VLSI chip [4].  

The basic skeleton of a hypertree is a complete binary tree rT . We denote an r -

level hypertree as )(rHT . The root vertex is said to be at level 0 . For any vertex 

v  at level i , the edge connecting it to the vertex in level 1i  is addressed as 

parent edge and the two edges connecting it to its left and right children are called 

left edge and right edge incident at v , ri 1 . Every vertex v  in any level i , 

0i  is adjacent to its corresponding vertex at the same level and such edges are 

addressed as horizontal edges. )(rHT  has 12 1 r  vertices and 1)3(2 r  edges. 

 
Fig. 4:  d -edge sum labeling of Hypertree HT( 3 )    

 

4.1.1      Algorithm d -edge sum )(rHT  

 :Input  Hypertree )(rHT , 1r  

:Algorithm  

Step 1.  Label the left edge and right edge incident at the root vertex as 1 and 2  

respectively. 

Step 2.  Let u  and v  be the left and right child of the root vertex. Label the edges 

at alternate levels of the complete binary subtree rooted at u  as 1  and 2  
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beginning with 1. Similarly, label the edges at alternate levels of the complete 

binary tree rooted at v  as 2  and 1 beginning with 2 . 

Step 3.  Label the horizantal edges as 1. 

:Output  2=))(( rHTds  

:  scorrectnesofProof  Let ))((),(= rHTEvue  . Every vertex u  other than the 

root vertex has one horizontal edge incident at it and it is labeled 1. Again, every 

vertex v  at level i , ri 0, , has a parent edge, a left edge, a right edge and a 

horizontal edge incident at it. By labeling algorithm, if parent edge is labeled 1, 

left and right edges are labeled 2  and vice versa. Hence if u  and v  are adjacent 

vertices of degree 4  at different levels then 9=)(),(=)(
)(),(

udvuluc
GEvu

 
 

and 10=)(),(=)(
)(),(

vduvlvc
GEuv

 
. If u  and v  are adjacent vertices of degree 

4  at the same level, then if u  is in the left binary tree then v  is the corresponding 

vertex in the right binary tree then 10=)(uc  and 9=)(vc . If u  is the root vertex, 

then 5=)(uc  which is less than )(vc  if v  is the right or left child of v . If u  and 

v  are adjacent vertices of degree 2  at level r , then 5=)(uc  and 4=)(vc . See 

Fig. 4. 

     Theorem 4.1.2 The hypertree )(nHT  admits d -edge sum labeling and 

2=))(( rHTds , 2n .  

4.2     Slim tree 

      Definition 4.2.1 [2] The thn  slim tree )(nST , 2n , denoted by 

),,,,(=)( rluEVnST , where V  is the node set, E  is the edge set and u , l , r  are 

vertices addressed as root node, left node and right node respectively is 

recursively defined as follows: 

1.  (2)ST  is the complete graph 3K  with its nodes labeled as u , l  and r . 

2.  The ths  slim tree )(sST , with 3s  is composed of a root node u  and two 

disjoint copies of ths 1)(   slim trees as the left subtree and right subtree, denoted 

by ),,,,(= 111111)( rluEVST l

n  and ),,,,(= 222221)( rlUEVST r

n , respectively. To be 

specific, ),,,,(=)( rluEVnST  is given by uVVV  21= , 

21212121 =,=),,(),,(),,(= rrlllruuuuEEE  . 
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Fig. 5:  d -edge sum labeling of Slim tree, ST( 5 ) 

 

4.2.2      Algorithm d -edge sum )(nST  

 :Input  Slim tree )(nST , 3n  

:Algorithm  

Let the root vertex be at level 0 . Vertices at distance i  from the root vertex are 

said to be at level i . 

Step 1.  Label all the horizontal edges as 1. 

Step 2.  Label the left edges incident on vertices in level 1n  as 1 and the right 

edges incident on vertices in level 2n  as 2 . 

Step 3.  Label the left and right edges incident on vertices at level 2n  as 3 . 

Step 4.  Label the edges incident at vertices in levels 2n  to 0  as follows: 

 )(i  Label the edges between levels 24  kn  and 14  kn  and edges 

between levels 14  kn  and kn 4 ,  1,2,...=k  as 1. 

)(ii  Label the edges between levels kn 4  and 14  kn  and edges 

between levels 14  kn  and 24  kn ,  1,2,...=k  as 2 . 

:Output  3))(( nSTds  

:  scorrectnesofProof  Let ))((),(= nSTEvue  . The sum )(uc , for all u  in the 

same level are all equal. For every vertex at level 1n , )(uc  is 9  and for any 

vertex at level n , )(uc  is less than or equal to 9 . Similarly, )(uc  of vertices at 

level 2n  is 10 . Further )(uc  of vertices at levels beginning from 3n  to 1 

follow the pattern i(6,7,9,8)  followed by ,6  or 6,7  or 6,7,9  according as 

4  0,1,2,3modn   respectively, 0i . Hence )()( vcuc  . 
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      Theorem 4.2.3 The slim tree )(nST  admits d -edge sum labeling and 

3))(( nSTds , for 3n .  

5      Conclusion 

A new graph labeling called d -edge sum labeling is defined. Finally, d -edge 

sum labeling of complete bipartite graphs and some classes of graphs such as 

cycle, wheel graphs, butterfly network, benes network, slim tree and hypertree are 

investigated. 
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