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Abstract

The closeness or the distance of a vertex u in a graph G,
denoted by &, (u), is the sum of distances between u and all other
vertices of G . The Wiener dimension of a connected graph is
defined as the number of different distances of its vertices. In this
paper we prove that any tree has Wiener dimension 2 if and only if
it is isomorphic to a star graph or a bi-star graph. We also identify
certain classes of trees with Wiener dimension 3 and 4.
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1 Introduction

Wiener index was introduced by the American chemist Harold Wiener in 1947 [1].
In the mathematical field of graph theory, the distance between two vertices u
and v of a graph G is the number of edges in a shortest path between u and v
and is denoted by d;(u,v) . The definition of the Wiener index in terms of

distances between vertices of a graph was first given by Hosoya [2]. Wiener index
of a graph G is defined as the sum of distances between all pairs of vertices in G :

W(G) = %ZU,VE\/(G)dG(U’V)' For a vertex u in graph G, the distance or closeness

of u is defined as 5G(u)=Zev(G)dG(u,v) . Suppose that
(6o (W) |ueV(G)}=15,,6,,....6.} and G contains t, vertices of distance d, ,

1<i <k, then the Wiener index of G can be expressed as W (G) :%Zk t.d.

=L 1
and the Wiener dimension dim,, (G) is defined as k. Alizadeha et al. [3] have

studied Wiener dimension of (5,0)-Nanotubical Fullerenes. Wiener index is
extensively studied in Chemistry [4, 5] and Mathematics [1, 6, 7].
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For the graph G in Fig. 1, &5(v,) =3, 55(v,) =4, 55(v;) =4, S55(v,)=5,
W(G) =8 and dim,, (G) =3.

i
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Fig. 1: Graph G with dim,, (G) =3

Trees are the first special classes of graphs that are studied extensively by many
authors [6, 8] and Dobrynin et al. [9] give a detailed survey on the Wiener index
of trees. In addition, Gutman and Skrekovski [10] proved that for a connected
graph G, the Wiener index is related to the betweenness centrality B(v) of the

vertices veV(G), a quantity used in the theory of social networks, which

measures the number of times a vertex lies on a shortest path between two other
vertices. There have been a series of research articles over Wiener index of trees,
for instance see [6, 7, 8, 11, 12, 13, 14, 15, 16, 17, 18, 19]. In this paper we
introduce a technique to compute &, (v) for veV(G) without using distances.

Further, we prove that a tree has Wiener dimension 2 if and only if it is
isomorphic to a star graph or a bi-star graph.

2  Basic Definitions

Definition 2.1 [3] Let G be a graph with vertex set V (G) and edge set E(G).
The distance d(u,v) between two vertices u,v eV (G) is the minimum number

of edges on a path in G between u and v.
Definition 2.2 [16, 20] Let G be a graph. The closeness or the distance of a
vertex u in G, denoted by &, (u), is defined as J; (u) = ZV d(u,v).

eV (G)

Thus, one can also define the Wiener index in a slightly different way:

W(G):%ZueV (G)ée(u) where % compensates for the fact that each path

between u and v is counted in S§;(u) as well as in &5;(v) . When there is no
ambiguity, we denote & (u) as o(u).

Definition 2.3 [20] The set of vertices of a graph G that minimizes the
closeness of vertices is called the median set of G ..
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Definition 2.4 [16] Let G be a graph. The diameter of G, denoted by
diam(G) is defined as diam(G) = max,,.,,d¢ (U,v), where maximum is taken

over all pairs of vertices in G .

Definition 2.5 [21] A tree is an undirected acyclic graph in which any two
vertices are connected by exactly one path.

Definition 2.6 Let T be a tree. A vertex v eV (T) is called branching point of
T, if degT (v)>3. If degT (v) =1, the vertex v is named a pendent vertex or a
leaf of T .

Definition 2.7 A star K,, is a complete bipartite graph with partite sets V,
and V,, where |V, |=1 and |V, |= k. The vertex of degree k is called the central
vertex and all other vertices are called leaves.

Definition 2.8 [22] A tree T is called a caterpillar if the tree obtained from

T by removing all pendent vertices induce a path. The path that is formed by the
non-leaves is known as the spine of the caterpillar.

Definition 2.9 Comb is a graph obtained by joining a single pendent edge to
each vertex of a path. The path is called the spine of the comb. A comb with m
spine vertices is denoted by C(m).

3  Trees with Wiener dimension 2

Among all the trees on n vertices, the star K, has the lowest Wiener index and
the path P, has the largest Wiener index [23] and hence for any tree T on n
vertices, W(K, ;) <W(T) <W(P,)[9]. In this paper we develop a new technique
to compute o(v) for v eV (G) without finding the actual distance from v to any
other vertex in G and formulate it as T -Closeness Lemma. In fact the Partition
Technique [24] is modified to compute 6(v) .

Definition 3.1 The bi-star graph is the graph obtained from two disjoint copies
of K, and K, by joining the central vertices by an edge and is denoted by B, .

Fig. 2: (a) u isachild of v, and v is a child of v, ; (b) v is a pendent vertex in
K,,; (c) v isaspine vertex and u is a pendent vertex in B,

Definition 3.2 Let veV(T). For e E(T), define congestion on e with
respect to v denoted by c,(e) as the number of times e is crossed while
traversing from v to every other vertex of T . See Fig. 2.
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Theorem 3.3 Let veV(T). Then &; (V) = ZeeE(T)cv (e).

Proof. Any path P of length d (v,w) from the vertex v to a vertex w in T
contributes congestion 1 on each of the edges in P . This is true for all paths from
v to every other vertex of T . This implies &; (V) = ZWEWT)d (v, W) = zeeE(T)cv (e).

Lemma 3.4 ( T -Closeness Lemma) Let T beatreeand veV(T). For every
edge e in T, let T, be the component of T —e which does not contain v. Then

5= . IVT)I.

Proof. Every edge e of T is a cut edge whose removal disconnects T into
two subtrees T, and T,, one of which contains v, say T.. Then all paths from v to

every vertex of T, yield |V (T,)| as the congestion c,(e) on e. By Theorem 3.3,
5(V) = ZeeE(T)CV (e) = zeeE(T) |V(Te) | '

Definition 3.5 Let v be a cut vertex of G. The v-components of G are
subgraphs induced by the components of G —V together with v.

Lemma 3.6 If T is a tree of order n>4 and if T contains a path of length
at least 3 all of whose internal vertices have degree 2, then dim,, (T) > 3.

T:
Vi V2 Vi

»
T:
. Vi Vv V1 V2 Vi Vil Vi
———————% +* 07 +* Cmﬁ *
* ]
(b)

(@)
Fig. 3: (a) Path P:v,v,v,...v,v asa v-component of T -V
(b) Caterpillar with k spine vertices

Proof. Let T beatree on n vertices, N> 4 and let veV (T). Let path
P:vV,V,...v,v, K>2, bea v-component of T —Vv. Foravertex x in T with
degree 2, let T, denote the subtree of T rooted at x and containing the vertex v.



Wiener Dimension of Certain Trees 100

Now, 5T (Vl) = (n_1)+5TV (Vz) = (n_1)+(n_2)+5Tv (V3) ;
Or (vz):1+5TV (v2)=1+(n—2)+5Tv (v5) and o; (v3):3+5TV (v,). Hence

07 (v;) = 67 (v,) implies n=2; &; (v,) =&, (v,) implies n=4 and

o; (v5) = &, (v;) implies n =3, which is a contradiction since n > 4. Hence
o7 (vy) # S; (v,) # J; (v,) . The case when v, =v is not ruled out. Thus

dim,, (T) > 3. See Fig. 3(a).

Lemma3.7 If T isa tree with dim, (T) =2, then T is a caterpillar.

Proof. Let P be a longest path in T. Then the end vertices of P are pendent
vertices in T . If not, the longest path property of P will be violated. Let

P:v\V,...v,, K>2.Since dim, (T) =2, by Lemma 3.6, a subtree of T rooted at
v, and not containing v;,v,,...,V, ;,V,,;,...,V, 1S isomorphic to a star graph rooted
atv,, 2 <i<k-1.SeeFig. 3(b). This implies that T is a caterpillar.

Lemma 3.8 Let T be a caterpillar with k spine vertices and dim,, (T)=2.
Then k <2.

V1 V2 Vi Vi1 Vi
* + R R R ]
M— — — — ———
" T e

Fig. 4: Caterpillar with k spine vertices

Proof. Suppose not. Let v,,Vv,,...,v, , kK>3 be the spine vertices from left to right.
Let the number of pendent edges incident at v, be r,, r, >0, 1<i<k. See Fig. 4.
Let u be achild of v, and v be a child of v, .
By T -Closeness Lemma,
owy=(n-1)+(rh-1)+(n—-(rp+1)+o; (v,)=(2n-3)+; (v,)=(2n-3)+r,
V2 V2
+(n=(r+r,+2)) +0; (V) =3n—r,-5+5; (v;)
V3 V3
On the other hand
oV)=(n-1)+(r,-1)+(n+1)+r+(n—(r,+r,+2)+5 (v;)=2n-3+06; (v5).
V3 V3
o(u)=6(v)=n=r,+2=T isastar graph with k =1, a contradiction. Hence
o(u) #o(v). Now
ov)=rn+(n—-(n+))+r,+(n—(n+r,+2)+0; (v;)=2n—-1-3+5; (V5).
V3 V3

Therefore 6(v) =d(v,) =1, =0, a contradiction.
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Similarly o(u) =d(v,) =>3n-5=2n-3=n= 2, a contradiction.
o(u) # S8(v) = 5(v,) , a contradiction to dim,, (T) =2. Hence k< 2.

Lemma 3.9 Let T be either the star graph K, or the bi-star graph B, ,
n>1.Then dim, (T)=2.

Proof. Case 1: Let G=K_,. Then c(v) = deg(v) =n if v is the central vertex

of the graph and c(v)=2n-1 when v is a pendent vertex. Therefore
dim,, (G) = 2. See Fig. 2(b).

Case 2 : Let G be a bi-star graph. When v is a spine vertex,
c(v)=(n+1)+2n=3n+1 and when u is a pendent vertex,
cuy=(n+1)+(@2n-1)+(2n-1)=5n-1 . See Fig. 2(c) . This implies
dim, (T)=2.

Theorem 3.10 Let T be a caterpillar with spine length k and dim,, (T) = 2.
Then T is isomorphicto K, or B, ..

Proof . By Lemma 3.8, k <2.If k=1, then T isisomorphicto K, . If

k =2, then T is isomorphic to a bistar with spine (v;,Vv,). If v, has r, leaves
adjacent to it and v, has r, leaves adjacent to it, then

1+2r,+3r, if xisaleaf adjacent tov,
1+2r, +3r, if xis aleaf adjacent tov,
o(X)=qn+1+2r, if X=v,
r,+1+2r if X=v,

Hence dim, (T)=2 onlyif r =r,=nand T isisomorphicto B .

Lemma 3.9 and Theorem 3.10 imply the following characterization of trees with
Wiener dimension 2.

Theorem 3.11 Let T be a tree. Then dim,, (T) =2 if and only if it is a star
graph K, or abi-star graph B, , n>1.

n,n?
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(a)dim,, (T,,) =3 (b) dim, (F, ;) =3

Fig. 5: (a) Crystal tree; (b) Firecracker graph

4  Trees with Wiener dimension 3 and 4

Definition 4.1 A crystal tree is defined as a tree in which every leaf member
of K,, is identified or merged with the root of a copy of K, . Crystal tree is

denoted by T, .. The root node is said to be in level 0. Vertices at distance i from
the root node are said to be at level i, 1<i<2.

Theorem 4.2 Let T, be a crystal tree. Then dimW (T,;)=3. Proof. Let T |

be a crystal tree with n=1,r > 2. T(u) for vertex u in level i is different from
T(u) for vertex u inlevel j, i= j.Onthe other hand T (u) is the same for
every u inalevel i, 1<i<2. See Fig. 5(a). Hence dim,, (T,,)=3.

64 64 64 64 64 64 64 64 64
* * - L) - * * -* * S — Level 3
\M \ 50 \M ——» Lewel2
42 442 Lz ——  Levell
;
bt —_—» Level 0

Fig. 6: Banana tree B,, with dim, (B,;,) =4

Definition 4.3 [25] An (n,r) -firecracker is a graph obtained by the

concatenation of n number of r-stars by linking one leaf from each. Firecracker
graph is denoted by F_ .
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The proof of Theorem 4.4 and Theorem 4.6 is similar to Theorem 4.2 .

Theorem 4.4 Let F,, be a firecracker graph. Then dim,, (F,,) = 3.
See Fig. 5(b).

Definition 4.5 [26] An (n,k) banana tree is a graph obtained by connecting

one leaf of each of n copies of a k -star graph with a single root vertex that is
distinct from all the stars. Banana tree is denoted by B, .

Theorem 4.6 Let T be a bananatree B, . Then dim, (B, ,)=4.

See Fig. 6.
5 Conclusion

The technique developed in this paper is a powerful tool to compute Wiener
dimension of trees. We have characterized certain trees with Wiener dimension 2.
It is an interesting line of research to characterize trees with Wiener dimension k,

k >3. In this direction, using T -Closeness Lemma we formulate a conjecture on
the Wiener dimension of a comb graph.

Conjecture. Let C(m) be a comb graph, m>2.

m—1 when m =1,5,9(mod 16)
Then dim (C(m))=<{m  whenmisevenor m=13(mod 16)
w

m+1 when m = 3(mod 4) or m = 3(mod 16)
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