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Abstract 

     The closeness or the distance of a vertex u  in a graph G , 
denoted by )(uG , is the sum of distances between u  and all other 
vertices of G . The Wiener dimension of a connected graph is 
defined as the number of different distances of its vertices. In this 
paper we prove that any tree has Wiener dimension 2  if and only if 
it is isomorphic to a star graph or a bi-star graph. We also identify 
certain classes of trees with Wiener dimension 3  and 4 . 
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1      Introduction 

Wiener index was introduced by the American chemist Harold Wiener in 1947 [1]. 

In the mathematical field of graph theory, the distance between two vertices u  

and v  of a graph G  is the number of edges in a shortest path between u  and v  

and is denoted by ),( vudG  . The definition of the Wiener index in terms of 

distances between vertices of a graph was first given by Hosoya [2]. Wiener index 

of a graph G  is defined as the sum of distances between all pairs of vertices in G : 

),(
2

1
=)(

)(,
vudGW GGVvu 

. For a vertex u  in graph G , the distance or closeness 

of u  is defined as ),(=)(
)(

vudu GGVvG  
 . Suppose that 

   kG GVuu  ,,,=)(|)( 21   and G  contains it  vertices of distance id , 

ki 1 , then the Wiener index of G  can be expressed as ii

k

i
dtGW  1=2

1
=)(  

and the Wiener dimension )(GdimW  is defined as k . Alizadeha et al. [3] have 

studied Wiener dimension of (5,0)-Nanotubical Fullerenes. Wiener index is 

extensively studied in Chemistry  [4, 5] and Mathematics  [1, 6, 7].  
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For the graph G  in Fig. 1, 3=)( 1vG , 4=)( 2vG , 4=)( 3vG , 5=)( 4vG , 

8=)(GW  and 3=)(Gdim W . 

                                
Fig. 1: Graph G  with 3=)(Gdim W  

Trees are the first special classes of graphs that are studied extensively by many 

authors  [6, 8] and Dobrynin et al.  [9] give a detailed survey on the Wiener index 

of trees. In addition, Gutman and Skrekovski [10] proved that for a connected 

graph G , the Wiener index is related to the betweenness centrality )(vB  of the 

vertices )(GVv , a quantity used in the theory of social networks, which 

measures the number of times a vertex lies on a shortest path between two other 

vertices. There have been a series of research articles over Wiener index of trees, 

for instance see  [6, 7, 8, 11, 12, 13, 14, 15, 16, 17, 18, 19]. In this paper we 

introduce a technique to compute )(vG  for )(GVv  without using distances. 

Further, we prove that a tree has Wiener dimension 2  if and only if it is 

isomorphic to a star graph or a bi-star graph. 

2      Basic Definitions 

      Definition 2.1  [3] Let G be a graph with vertex set )(GV  and edge set )(GE . 

The distance ),( vud G  between two vertices )(, GVvu   is the minimum number 

of edges on a path in G  between u  and v .  

     Definition 2.2  [16, 20] Let G  be a graph. The closeness or the distance of a 

vertex u  in G , denoted by )(uG , is defined as ),(=)(
)(

vudu
GVvG  

 .  

      Thus, one can also define the Wiener index in a slightly different way:  

)(
2

1
=)(

)(
uGW GGVu

 
 where 

2

1
 compensates for the fact that each path 

between u  and v  is counted in )(uG  as well as in )(vG . When there is no 

ambiguity, we denote )(uG  as )(u . 

     Definition 2.3 [20] The set of vertices of a graph G  that minimizes the 

closeness of vertices is called the median set of G .  
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     Definition 2.4 [16] Let G  be a graph. The diameter of G , denoted by 

)(Gdiam  is defined as ),(=)( )(, vudmaxGdiam GGVvu  , where maximum is taken 

over all pairs of vertices in G .  

     Definition 2.5  [21] A tree is an undirected acyclic graph in which any two 

vertices are connected by exactly one path.  

     Definition 2.6 Let T  be a tree. A vertex )(TVv  is called branching point of 

T , if 3)( vdeg
T

. If 1=)(vdeg
T

, the vertex v  is named a pendent vertex or a 

leaf of T .  

     Definition 2.7 A star kK ,1  is a complete bipartite graph with partite sets 1V  

and 2V , where 1|=| 1V  and kV |=| 2 . The vertex of degree k  is called the central 

vertex and all other vertices are called leaves.  

     Definition 2.8  [22] A tree T  is called a rcaterpilla  if the tree obtained from 

T  by removing all pendent vertices induce a path. The path that is formed by the 

non-leaves is known as the spine of the caterpillar.   

     Definition 2.9 Comb is a graph obtained by joining a single pendent edge to 

each vertex of a path. The path is called the spine of the comb. A comb with m  

spine vertices is denoted by )(mC .  

3      Trees with Wiener dimension  2 

Among all the trees on n  vertices, the star 1,1 nK  has the lowest Wiener index and 

the path nP  has the largest Wiener index [23] and hence for any tree T  on n  

vertices, )()()( 1,1 nn PWTWKW  [9]. In this paper we develop a new technique 

to compute )(v  for )(GVv  without finding the actual distance from v  to any 

other vertex in G  and formulate it as T -Closeness Lemma. In fact the Partition 

Technique [24] is modified to compute )(v . 

     Definition 3.1 The bi-star graph is the graph obtained from two disjoint copies 

of mK ,1  and nK ,1  by joining the central vertices by an edge and is denoted by nmB , .  

 

 Fig. 2: (a) u  is a child of 1v  and v  is a child of 2v  ; (b) v  is a pendent vertex in 

nK1, ;  (c) v  is a spine vertex and u  is a pendent vertex in 11,  nnB  

     Definition 3.2 Let )(TVv . For )(TEe , define congestion on e  with 

respect to v  denoted by )(ecv  as the number of times e  is crossed while 

traversing from v  to every other vertex of T . See Fig. 2 . 
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     Theorem 3.3  Let )(TVv . Then )(=)(
)(

ecv vTEeT  
 .   

     Proof. Any path P  of  length ),( wvd T  from the vertex v  to a vertex w  in T  

contributes congestion 1 on each of the edges in P . This is true for all paths from 

v  to every other vertex of T . This implies )(=),(=)(
)()(

ecwvdv vTEeTVwT  
 .  

      Lemma 3.4 ( T -Closeness Lemma )  Let T  be a tree and )(TVv . For every 

edge e  in T , let eT  be the component of eT   which does not contain v . Then 

|)(|=)(
)( eTEe

TVv  
 .   

     Proof.  Every edge e  of T  is a cut edge whose removal disconnects T  into 

two subtrees 
eT  and '

eT , one of which contains v , say '

eT . Then all paths from v  to 

every vertex of eT  yield |)(| eTV  as the congestion )(ecv  on e . By Theorem 3.3 , 

|)(|=)(=)(
)()( eTEevTEe

TVecv  
 .  

      Definition 3.5 Let v  be a cut vertex of G . The v -components of G  are 

subgraphs induced by the components of vG   together with v .  

      Lemma 3.6  If T  is a tree of order 4>n  and if T  contains a path of length 

at least 3  all of whose internal vertices have degree 2 , then 3)( TdimW .   

 
Fig. 3: (a) Path vvvvvP k321:  as a v -component of vT   

(b) Caterpillar with k  spine vertices 

 

 Proof.  Let T  be a tree on n  vertices, 4>n  and let )(TVv . Let path 

vvvvvP k321: , 2k , be a v -component of vT  . For a vertex x  in T  with 

degree 2 , let xT  denote the subtree of T  rooted at x  and containing the vertex v . 
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Now, )(2)(1)(=)(1)(=)( 3
3

2
2

1 vnnvnv
v

T
v

TT   ; 

)(2)(1=)(1=)( 3
3

2
2

2 vnvv
v

T
v

TT    and )(3=)( 3
3

3 vv
v

TT   . Hence 

)( 1vT  = )( 2vT  implies 2=n ; )()( 32 vv TT    implies 4=n  and 

)()( 13 vv TT    implies 3=n , which is a contradiction since 4>n . Hence 

)()()( 321 vvv TTT   . The case when vv =3
 is not ruled out. Thus 

3)( TdimW . See Fig. )3(a .  

      Lemma 3.7  If T  is a tree with 2=)(TdimW , then T  is a caterpillar.  

     Proof. Let P  be a longest path in T . Then the end vertices of P  are pendent 

vertices in T . If not, the longest path property of P  will be violated. Let 

kvvvP 21: , 2k . Since 2=)(TdimW , by Lemma 3.6 , a subtree of T  rooted at 

iv  and not containing kii vvvvv ,,,,,, 1121    is isomorphic to a star graph rooted 

at iv , 12  ki . See Fig. )3(b . This implies that T  is a caterpillar.  

      Lemma 3.8 Let T  be a caterpillar with k  spine vertices and 2=)(TdimW . 

Then 2k .   

                                  
Fig. 4: Caterpillar with k  spine vertices 

 

Proof.  Suppose not. Let kvvv ,,, 21  , 3k  be the spine vertices from left to right. 

Let the number of pendent edges incident at iv  be ir , 0ir , ki 1 . See Fig. 4 . 

Let u  be a child of 1v  and v  be a child of 2v .  

By T -Closeness Lemma, 

)(53=)(2))((

3)(2=)(3)(2=)(1))((1)(1)(=)(

3
3

13
3

21

22
2

2
2

11

vrnvrrn

rnvnvrnrnu

v
T

v
T

v
T

v
T









.

On the other hand 

)(32=)(2))((1)(1)(1)(=)( 3
3

3
3

21112 vnvrrnrrrnv
v

T
v

T   . 

Trnvu  2=)(=)( 1  is a star graph with 1=k , a contradiction. Hence 

)()( vu   .  Now 

)(32=)(2))((1))((=)( 3
3

13
3

212111 vrnvrrnrrnrv
v

T
v

T   . 

Therefore 0=)(=)( 11 rvv  , a contradiction.  
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Similarly 2=32=53)(=)( 1 nnnvu  , a contradiction. 

)()()( 1vvu   , a contradiction to 2=)(TdimW
. Hence 2k .  

      Lemma 3.9 Let T  be either the star graph nK ,1  or the bi-star graph nnB , , 

1>n . Then 2=)(TdimW
.   

     Proof. Case 1: Let nKG ,1 . Then nvdegvc =)(=)(  if v  is the central vertex 

of the graph and 12=)( nvc  when v  is a pendent vertex. Therefore 

2=)(GdimW . See Fig. )2(b .  

Case 2 : Let G  be a bi-star graph. When v  is a spine vertex, 

13=21)(=)(  nnnvc  and when u  is a pendent vertex, 

15=1)(21)(21)(=)(  nnnnuc . See Fig. )2(c . This implies 

2=)(TdimW .  

      Theorem 3.10 Let T  be a caterpillar with spine length k  and 2=)(TdimW . 

Then T  is isomorphic to nK ,1  or nnB , .   

      Proof . By Lemma 3.8 , 2k . If 1=k , then T  is isomorphic to nK ,1 . If 

2=k , then T  is isomorphic to a bistar with spine ),( 21 vv . If 1v  has 1r  leaves 

adjacent to it and 2v  has 2r  leaves adjacent to it, then  

 






















212

121

212

121

=   21

=   21

         321

         321

=)(

vxifrr

vxifrr

vtoadjacentleafaisxifrr

vtoadjacentleafaisxifrr

x   

 Hence 2=)(TdimW  only if nrr == 21  and T  is isomorphic to nnB , .  

Lemma 3.9  and Theorem 3.10  imply the following characterization of trees with 

Wiener dimension 2 .  

     Theorem 3.11 Let T  be a tree. Then 2=)(TdimW  if and only if it is a star 

graph nK ,1  or a bi-star graph nnB , , 1>n .   
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Fig. 5: (a) Crystal tree; (b) Firecracker graph 

   

4      Trees with Wiener dimension  3 and 4 

         Definition 4.1 A crystal tree is defined as a tree in which every leaf member 

of nK ,1  is identified or merged with the root of a copy of rK ,1 . Crystal tree is 

denoted by rnT , . The root node is said to be in level 0 . Vertices at distance i  from 

the root node are said to be at level i , 21  i .  

       Theorem 4.2 Let rnT ,  be a crystal tree. Then 3=)( ,rn
W

Tdim .  Proof. Let rnT ,  

be a crystal tree with 2 1,= rn . )(uT  for vertex u  in level i  is different from 

)(uT  for vertex u  in level j , ji  . On the other hand )(uT  is the same for 

every u  in a level i , 21  i . See Fig. )5(a . Hence 3=)( ,rnW Tdim .  

 

 

                  
 

Fig. 6: Banana tree 4,3B  with 4=)( 4,3BdimW  

   

     Definition 4.3 [25] An ),( rn -firecracker is a graph obtained by the 

concatenation of n  number of r -stars by linking one leaf from each.  Firecracker 

graph is denoted by rnF , .  
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The proof  of  Theorem 4.4 and Theorem 4.6 is similar to Theorem 4.2 . 

     Theorem 4.4  Let rF ,2  be a firecracker graph. Then 3=)( ,2 rW Fdim . 

     See Fig. )5(b . 

      Definition 4.5 [26] An ),( kn  banana tree is a graph obtained by connecting 

one leaf of each of n  copies of a k -star graph with a single root vertex that is 

distinct from all the stars. Banana tree is denoted by knB , . 

      Theorem 4.6 Let T  be a banana tree knB , . Then 4=)( ,knW Bdim .  

      See Fig. 6 .  

5      Conclusion 

The technique developed in this paper is a powerful tool to compute Wiener 

dimension of trees. We have characterized certain trees with Wiener dimension 2 . 

It is an interesting line of research to characterize trees with Wiener dimension k , 

3k . In this direction, using T -Closeness Lemma we formulate a conjecture on 

the Wiener dimension of a comb graph.  

            Conjecture. Let )(mC  be a comb graph, 2m .  

 Then   




















16) 3(  4) 3(   1

16) 13(            

16) 1,5,9(   1
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