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Abstract 

      Let G=(V,A) be a digraph. The eccentricity e(u) of a vertex u is 
the maximum distance from u to any other vertex in G. A vertex v in 
G is an eccentric vertex of u if the distance from u to v equals e(u). 
The eccentric digraph ED(G) of a digraph G has the same vertex set 
as G and has arcs from a vertex v to its eccentric vertices. In this 
paper we present several results on the eccentric digraph of a 
tournament. 
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1      Introduction 

Buckley [3] introduced the notion of eccentric digraph of a graph which was then 

refined by others, including Boland and Miller [1].  In [8] the iteration  of distance 

digraph of a graph is discussed. In this paper, we consider the eccentric digraph of 

tournaments and obtain several properties.  We also derive conditions that ensure 

that the dual of a tournament T is the eccentric digraph of T. 
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By a graph G=(V,E), we mean a finite, undirected graph with neither loops nor 

multiple edges. Similarly in a digraph G = (V,A), multiple arcs or loops are not 

allowed. For graph theoretic terminology in graphs and  digraphs we refer to 

Chartrand and Lesniak [5]. The order |V| and the size |E| of G are denoted by n and 

m respectively. 

Let G=(V,A) be a digraph and let uV. Then O(u)={vV: (u,v)A} and                  

I(u)={v V: (v,u) A} are respectively called out-neighbor set and in-neighbor set 

of u. Also |O(u)|=d+(u) is called the out-degree of u and |I(u)|=d(u) is called the 

in-degree of u. 

The eccentric digraph ED(G) of a digraph G is the digraph on the same vertex set 

as that of G with an arc from vertex u to vertex v in ED(G) if and only if v is an 

eccentric vertex of u in G. For every digraph G there exist smallest positive   

integers p>0 and t0 such that EDt(G) = EDp+t(G). The integers p and t are called 

the period of G and the tail of G  and are denoted by p(G) and t(G) respectively. If 

t=0 then G is called periodic. 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1: Tournament T and its Eccentric Digraph ED(T) 

 

For several basic results on eccentric digraphs we refer to [2,4,6,7]. 

A graph G is self-centered if e(v)=rad(G) = diam(G) for all vertices v of G. 

A tournament T is a complete asymmetric digraph. In other words, for every two 

distinct vertices  u,v  V(T), either (u, v)  A(T) or (v,u) A(T),  but not both, and 

(v, v) is not in  A(T) for all vV(T). A tournament with n vertices, is called an               

n-tournament. The score of a vertex u of a tournament is its out-degree and it is 

denoted by s(u) or sT(u). The score sequence of a tournament is the nondecreasing 
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sequence of out-degrees of the vertices of the tournament. The score set of a 

tournament is the set of integers that are the out-degrees of vertices in that 

tournament. A regular tournament is one in which every vertex has the same             

out-degree. A tournament is transitive if whenever (u,v) and (v,w) are arcs in T, 

then (u,w) is also an arc in T. The dual of T is the tournament Tr, with V(Tr) =V(T) 

and (u,v)A(Tr) if and only if (v,u) A(T). We define the dual of a digraph G in 

the same way and use the same notation. 

We need the following theorem.  

     Theorem 1.1. ([5], Page 139)  A nondecreasing sequence S of n(1) 

nonnegative integers is a score sequence of a transitive tournament of order n if 

and only if S is the sequence 0,1,…,n1. 

2      Eccentric Digraph of a Tournament 

In this section we obtain several results on eccentric digraphs of tournaments. 

     Lemma 2.1.  Let T=(V,A) be a tournament on n vertices and let uV(T). Then 

sT(u) = n1 if and only if )(deg1)(deg )()( unu TEDTED

  . 

Proof. Let uV(T). Then sT(u)= n1 if and only if all the vertices in T{u} are 

eccentric vertices of u and u is the eccentric vertex of all the vertices in T{u}. 

Hence sT(u)=n1 if and only if  )(deg1)(deg )()( unu TEDTED

  .                                                         

Corollary 2.2.  If T is a tournament having a source w, then ED(T) is a strongly 

connected digraph but is not a tournament. 

     Theorem 2.3 Let T=(V,A) be a tournament on n vertices. Then ED(T) =Tr if 

and only if for all u in V(T), the following conditions  are satisfied. 

(i) sT(u) n1. 

(ii) dT(u,v) =2 for all )(uNv T

 or dT(u,v) =, for all )(uNv T

 . 

Proof.  Let T=(V,A) be a tournament on n vertices satisfying the conditions (i) and 

(ii).  Let uV(T). Then condition (i) implies that  )(uNT and condition (ii) 

implies that  every in-neighbor v of u in T is an eccentric vertex of u. Hence v is 

an out-neighbor of u in ED(T). Also, if w is an out-neighbour of u in T, then u is 

an in-neighbour of w in T. Hence u becomes an out-neighbour of w in ED(T). 

Thus ED(T) = Tr.                                                              

Conversely, suppose ED(T) = Tr. Let uV(T). If sT(u)= n1, then by Lemma 2.1 

we have ),(deg1)(deg )()( unu TEDTED

  which contradicts the assumption that      

ED(T) =Tr. Therefore sT(u) n1 for all u in V(T). This proves (i). Now, let sT(u) = 

k  and },...,,,{)( 1321 

  knT vvvvuN . Since ED(T)=Tr,  each vi is an eccentric vertex 
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of u. Hence dT(u,vi) = dT(u,vj) for all )(, uNvv Tji

 . Now, dT(u,vi) = 2 if there 

exists ).()( iTT vNuNw    Otherwise dT(u,vi) = .  This proves (ii).                              

Corollary 2.4. Let T =(V,A) be a tournament. Then ED(T) = Tr and                    

ED2(T) = T if  T is self-centered with radius two. 

Proof.  Let T be a self-centered tournament with radius two. Then for every u in 

V(T), we have 0<sT(u) < n1 and dT(u,v) = 2 for all )(uNv T

 . Hence it follows 

from Theorem 2.3 that ED(T) = Tr. We now claim that Tr is also a self-centered 

tournament with radius two. Suppose (u,v)A(Tr). Then (u,v)A(T) and (v,u) 

E(T). Hence dT(u,v)=2. Now if (v,w,u) is a path in T, then (u,w,v) is a path in Tr 

and hence .2),( uvd rT
 Thus Tr is a self-centred tournament with radius 2. Hence  

ED(Tr) =(Tr)r = T. Thus ED2(T) = T.                                                                       

We now proceed to obtain an  upper bound for the number of arcs in the eccentric 

digraph of a tournament. 

     Theorem 2.5 Let T = (V,A) be a tournament on n vertices.  If T has no source, 

then |A(ED(T))|  nc2 and  equality holds if and only if for all u V(T) either 

dT(u,v) = 2 for all  )(uNv T

  or dT(u,v) = for all  )(uNv T

 . 

Proof.  Let u V(T). Since T has no source, only  in-neighbors of u can be 

eccentric vertices of u. Hence |,)(||)(| uNuE T

  where E(u) denotes the set of all 

eccentric vertices of u. This implies that 

 
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 )(
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Since ,|)(||))((|
)(


 TVu

uETEDA we have |A(ED(T))|nc2. If for all uV(T), dT(u,v) 

= 2, for all )(uNv T

  or dT(u,v) = , for all )(uNv T

 , then by Theorem  2.3, 

ED(T) = Tr. This implies that |A(ED(T))| = nc2. 

Conversely, suppose that |A(ED(T))| = nc2. Then since T has no source, for any u 

V(T), all the in-neighbors v of u are eccentric vertices of u. This happens only if 

dT(u,v) = 2 for all )(uNv T

  or dT(u,v) =  for all )(uNu T

 .                                                                                     

 Theorem 2.6 For any graph G, ED(G) is not a tournament. 

Proof.  Suppose  ED(G) is a tournament. Let u and v be any two adjacent vertices 

in G. Since ED(G) is a tournament,  either v is an eccentric vertex of u or u is an 

eccentric vertex of v. 

Without loss of generality, let  v be  an eccentric vertex of u. Then e(u) =1  and 

hence all the vertices of Gu are adjacent as well as eccentric vertices of u in G. It 

follows that diam(G) =2. Hence for two non-adjacent vertices x and y in G, x is an 
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eccentric vertex of y and y is an eccentric vertex of x. Hence (x,y) and (y,x) are 

arcs in ED(G), which is a contradiction. Hence ED(G) is not a tournament.           

     Theorem 2.7. Let T=(V,A) be a tournament on n vertices. If T has a source, 

then 1
2

|))((| 







 n

n
TEDA  and equality holds if and only if T is a transitive 

tournament. 

Proof. Let w be the source of T. Then d+(w)=sT(w)=n1 and all the vertices in T-

{w} are eccentric vertices of w. Hence |E(w)|=n1. Also for any vertex u w, only 

in-neighbors of u can be eccentric vertices of u and hence |E(u)| |I(u)|=d(u). 
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Now, suppose T is a transitive tournament. Then T has a Hamilton path 

(u1,u2,…,un). Since T is transitive it follows that (ui,uj)A(T) for all i,j with i<j. 

Hence |E(ui)|=d(ui)=i1. 

.1
2

                            

)1()(                            

|)(||))((|  Thus

2

1











 









n
n

nud

uETEDA

n

i
i

n

i
i

 

Conversely, suppose )1(
2

|))((| 







 n

n
TEDA . Then for any uV{w} all the 

in-neighbors of u are the only eccentric vertices of u. Further every vertex of 

V{w} is an eccentric vertex of w. Hence  













}{ 2
)(

wVu

n
ud and 1d(u) n1 for 

all uV{w}. We claim that no two vertices of T have the same score.                         

Let u,v V(T) and assume without loss of generality that (u,v)A(T). Let W=O(v) 

so that sT(v)=|W|. Now since (v,w)A(T) for all wW, (u,v)A(T) and T is 

transitive it follows that (u,w)A(T). Thus d+(u)1+|W|>d+(v). Hence the score 

sequence of T is 0,1,2,…,n1 and it follows from Theorem 1.1 that T is a 

transitive tournament.                                                                                    
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3      Conclusion and Scope 

In this paper we have presented several basic results on eccentric digraphs of 

tournaments. Miller et al. [8] have presented several open problems and 

conjectures on eccentric digraphs. In particular one can investigate corresponding 

problems for eccentric digraphs of tournaments. 
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