
Int. J. Advance Soft Compu. Appl, Vol. 9, No. 2, July 2017

ISSN 2074-8523

Combination of Genetic Algorithm with

Dynamic Programming for Solving TSP

Hemmak Allaoua

Computer science department,

University of Bejaia, Bejaia 06000,

AlgeriaComputer science department,

University of M'sila,M'sila 28130, Algeria
e-mail: hem_all@yahoo.fr

Abstract

 This paper presents a combination of Genetic Algorithm (GA) with
Dynamic Programming (DP) to solve the well-known Travelling
Salesman Problem (TSP). In this work, DP is integrated as a GA
operator with a certain probability. In specific, at a given GA
generation, the individuals are subdivided into a number of equal
segments of genes, and the shortest path on each segment is obtained
by applying a DP algorithm. Since the computational complexity of
the DP is O (k22k), it becomes of O(1) when k is small. Experimental
analyses are conducted to investigate the impact and trade-offs among
DP probability, segment size and time processing on the solution
quality and computational effort. In addition, we will implement a
basic GA approach to compare results and show the contribution of
combination of combination approach. Experimental results on
benchmark instances showed that the combined GA-DP algorithm
reduces significantly the computational effort, produces a clearly
improved solution quality and avoids early premature convergence of
GA.

Keywords: Combinatorial Optimization, Dynamic Programming, Evolutionary
Computing, Genetic Algorithm, Traveling Salesman Problem.

1 Introduction

It is clear that hybridizing methods to solve many cases of NP-Hard problems

becomes a metaheuristics alone. Since the near aspect of metaheuristics,

hybridizing exact method as DP with meta heuristic as GA give certainly good

results that hybridizing just meta heuristics between each other, despite the time

cost inducted by using exponential complexity method as DP. In the other hand, the

Hemmak Allaoua 32

use of a model of NP-Hard problem such as TSP still necessary to show the

efficiency of the proposed approach. Traveling Salesman Problem (TSP) is a well-

known NP-hard problem. Many algorithms were developed to solve this problem

and gave the nearly optimal solutions within reasonable time. This paper presents a

combination Genetic Algorithm (GA) with Dynamic Programming (DP) for

solving TSP on 10 Euclidean instances derived from TSP-lib. Experimental results

are reported to show the efficiency of the experimented algorithm comparing to, on

one hand to basic GA results, and, in other hand, to the existing results. In this

paper, we present a combination of GA with DP (called GA-DP) for solving this

problem. In GA-DP, DP is used as genetic operator as crossover and mutation.

Therefore, in each generation, according a specific probability PDP, each solution is

subdivided on equal segments of size k, (we will take k=10; 15; 20 and PDP = 0.5,

0.6, 0.7, 0.8). For each segment, DP is applied to compute the shortest path for this

segment. We experiment this approach on 10 Euclidean instances derived from

TSP-lib [22] and compare the result with basic GA. Because of the stochastic aspect

of GA, for each TSP instance, both GA-DP and basic GA are applied for five times

and average values are reported on result tables.

Our motivation emanate from that traveling salesman problem is an important

problem in computing fields and has many applications in the real-world such as

scheduling, vehicle routing, economic models, VLSI layout design… The problem

was first formulated in 1930 and became one of the most intensively studied

problems in optimization. Until now, researchers have obtained many significant

results for this problem.

The next section introduces the literature of the hybridizing Genetic Algorithms

with Dynamic Programming for Solving TSP. In section III, we propose basic GA

approach. Section VI presents the combination GA-DP approach for solving TSP.

The details of our experiments and the computational and comparative results are

given in section V. The paper concludes with section VI with some discussions on

the future perspectives of this work.

2 Literature

TSP is stated as following: Let 1, 2, …, n be the labels of the n cities and C = [ci,j]

be an n x n cost matrix where ci,j denotes the cost of traveling from city i to city j.

TSP is the problem of finding the n-city closed tour having the minimum cost such

that each city is visited exactly once. The total cost A of a tour is:

A(n)= ∑ 𝑐𝑖,𝑖+1 +𝑛−1
𝑖=1 𝑐1,𝑛 (1)

TSP is formulated as finding a permutation of n cities, which has the minimum cost.

This problem is known to be NP-hard [2, 4, 5]. Many algorithms have been

proposed to solve this problem [2, 3, 4, 5, 7, 10, 11, 12, 14, 15, 17]. There are two

main approaches for solving TSP: exact and approximate.

33 Combination Of Genetic Algorithm with

Exact approaches are usually based on Dynamic Programming, Branch and Bound,

Integer Linear Programming…and all gave the optimal solutions for TSP.

However, the algorithms basing on these approaches have exponential running time

as M. Held and R. M. Karp [1] pointed out Dynamic Programming takes O(n2.2n)

running time. Hence, they can only solve TSP with small number of the vertices as

algorithms using branch and bound method are only able to give solutions for 40 –

60 cities sets and ones using linear programming solve with maximum for 200 cities

sets.

In an attempt to solve larger instances, especially in such the NP-hard problem,

researchers have concerned approximation approaches in recent years. Many

approximation approaches were proposed for solving TSP such as 2- opt, 3-opt [2],

simulated annealing [3], tabu search [4,28]; nature based optimization algorithms

and population based optimization algorithms: genetic algorithm [16, 19, 20],

evolutionary computation [5], neural networks [6], DNA computing [9]; swarm

optimization algorithms: ant colony optimization [7], bee colony optimization [8].

The algorithms basing on these approaches can solve large instances and give

approximate solutions near to the optimal solution within reasonable time [26,27].

In addition to above original approximation approaches, there is a different one

combining basic heuristic methods called meta-heuristics. In [18], the authors

applied local search heuristics to GA for solving TSP. The local search method they

used is 2-opt. They presented three crossover operators (PMX, OX, POS) and two

mutation operators (IVM, EM), then combine 2-opt with one pair of crossover and

mutation operator in turn. After experimenting their algorithms on kroA100,

kroB100 and kroC100 instances, they found that the combination of two genetic

operators (IVM and POS) with 2-opt gave better solutions than the others did for

solving TSP problem. They also implemented this combination but with 3-opt

instead of 2-opt and came to the conclusion that the combination with 3-opt gave

better solutions but converged to global optimum in more time.

Also using local search, Bernd Freisleben et al. proposed Genetic Local Search

(GLS) for the TSP [20]. Their algorithm used the idea of hill climber to develop

local search in GA. Their experiment showed that GLS is more effective in terms

of not only running time, but also cost than ones in [21]. Besides exact and

approximate approaches, a different one that is the combination of these two

approaches, in which the combination GA with DP is most popular and it will be

introduced in the next section.

3 Basic GA presentation

Genetic algorithms, introduced by J. Holland (1975), are inspired from the Darwin

evolution theory: in the population evolution, the best individuals, which are more

adapted to their environment, can outlive for a long time, on the on other hand, the

individuals, which are not fits to their environment, disappear with the passage of

Hemmak Allaoua 34

generations. Therefore, its chromosome and an appropriate fitness function to be

defined to evaluate individuals code each individual. Firstly, GA consists to

randomly generate initial population, then, genetic operators (selection, crossover,

mutation), within specified probabilities, are applied to produce a new generation

that considered best than its previous. This process must be iterative for a great

number of generations as shown as follow:

Begin

 Initialization;

 Evaluation;

 Repeat

 Selection;

 Crossover;

 Mutation;

 Evaluation;

 Until (Criteria Stopping);

End.

However, the individuals encoding, fitness function, selection method, probability

crossover, probability mutation and criteria stopping depend of the treated problem.

These are the GA parameters. So they must be carefully chosen, because they can

considerably affect the solution quality and the rate of GA convergence. Good

choice of these parameters often avoids premature convergence of GA.

4 Proposed approach GA-DP

As we have reported in the literature above, there are many ways for hybridizing

GA with DP. In our case, we integrate DP as a GA operator with specific probability

PDP. Exactly like crossover and mutation operators. This new phase will be added

just before evaluation phase as follow:

Begin

 Initialization;

 Evaluation;

 Repeat

 Selection;

 Crossover;

35 Combination Of Genetic Algorithm with

 Mutation;

 Apply_DP;

 Evaluation;

 Until (Criteria Stopping);

End.

However, the essential of our work consists to subdivide the individual on equal

segments sized k (k {5,10,15,20}) and applying DP to compute the shortest path

of each segment. General algorithm of this step will be as follow:

Algorithm Apply_DP (integer i; PDP)

Begin

 Generate a probability P i;

 If (Pi ≤ PDP) For (each segment S of individual i) Compute_shortest_path(S);

End.

The DP algorithm (Compute_shortest_path(S)) consists to run through the current

generation. For each individual i, we generate a probability Pi. If Pi ≤ PDP, the

following process is applied.

For a subset of k cities (k=5,10, 15 or 20) S ⊆ {1,2,...,n}, S= {i1,,...,ik} that includes

i1, and j∈S, let C(S,j) be the length of the shortest path visiting each node in S

exactly once, starting at i1 and ending at j.

When |S| > 1, we define C(S, 1) = ∞ since the path cannot both start and end at i1.

Now, let’s express C(S,j) in terms of smaller sub-problems (Bellman principle). We

need to start at i1 and end at j; what should we pick as the second-to-last city? It has

to be some i ∈ S, so the overall path length is the distance from i1 to i, namely,

C(S−{j}, i), plus the length of the final edge, di,j. We must pick the best such i:

C(S,J) = min
𝑖∈𝑆−{𝐽}

𝐶(𝑆 − {𝑗}, 𝑖) + 𝑑𝑖;𝑗 (Bellman principle)

The sub-problems are ordered by |S|. Here is the code :

C({i1},i1) = 0

for m = 2 to k:

 for all subsets S ⊆ {1,2,...,k} of size m and containing i1:

 C(S,i1) = ∞

 for all jS, j≠i1: C(S, j) = 𝑚𝑖𝑛
𝑖∈𝑆−{𝐽}

𝐶(𝑆 − {𝑗}, 𝑖) + 𝑑𝑖;𝑗 : 𝑖𝑆 , 𝑖 ≠ 𝑗}

return permutation(S) having 𝑚𝑖𝑛
𝑖

𝐶({𝑖1, … , 𝑘}, 𝑗})

Hemmak Allaoua 36

There are at most k.2k sub-problems, and each one takes linear time to solve. The

total running time is therefore O(k22k). .

5 Computational results and comments

5.1 Instances

The results are reported for the symmetric TSP by extracting benchmark

instances from the TSP-lib [22]. The instances chosen for our experiments are:

eil51.tsp, eil76.tsp, eil101, kroA100, kroA150, kroA200, lin318, rat575, rat783,

pr1002. Their weights are Euclidean distance in 2-D.

5.2 System configuration

In the experiment, the system was run 10 times for each problem instance. All the

programs were run on a machine with Intel i3 2.3 GHz, 4 GB RAM, and were

installed by C# language.

5.3 Implementation setting

In order to evaluate GA-DP approach, compare it with basic GA and use TSP-Lib,

according the well-known GA parameters values and our own results obtained for

other problems, we have opted for the following configuration:

Input:

 Let n the size of the TSP instance, the number of cities. According the

instances chosen below, according to chosen TSP instances, we have :

 n {51,76,100, 101, 150, 200 , 318 , 575 , 783 , 1002}.

Parameters:

 Population Initialization in GA: by uniform law.

 Population size (number of individuals in each generation) = 10000 log n.

 Number of generations (iterations in GA) =50000 log n. (criteria stopping).

 Selection operator in GA: by fortune wheel method.

 Crossover probability, pc=0.8.

 Mutation probability, pm=0.03.

 Fitness function(i) = 1-Obj(i)/Obj(i)

Variables:

 Size of segment in GA-DP, k {5,10,15, 20}.

 DP probability PDP, PDP { 0.5 , 0.6 , 0.7, 0.8}.

37 Combination Of Genetic Algorithm with

Output:

 Opt.= optimal solution provided by TSP-LIB.

 Sol.= near solution obtained by our approaches (GA or GA-DP).

 T CPU = average of times processing in second for 10 runs of each TSP

instance.

 Ratio of Performance to Deviation = RPD = {(Sol − Opt)/Opt} ∗ 100.

5.4 Experimental results

In the first step, we show in table 1 below, sample example of using DP to find

shortest path of set S with smaller size k:

Table 1: Processing time of DP algorithm with smaller size.

k 5 10 15 20

CPU time (s) 0.12 0.020 0.641 21.748

This table shows clearly that DP is an exponential algorithm but it is O(1) for

smaller size. When used in GA as operator that will add in worst case:

Number of generations * number of genes*k22k = k22k (n2 log2n) elementary

operations.

This proves that when integrating DP in GA as operator, the hybrid approach

obtained still polynomial as GA despite of its cost in time processing.

In the second step, we show in table 2, the results obtained by basic GA using

parameters described above;

Table 2: Results of basic GA.
Instance Opt. Sol. RPD T. cpu

eil51 426 451 5.87 40.54

eil76 538 574 6.69 66.52

eil101 629 660 4.93 94.02

kroA100 21282 36345 70.78 88.58

kroA150 26524 42615 60.67 140.8

kroA200 29368 51541 75.50 179.05

lin318 42029 73202 74.17 345.29

rat575 6773 20798 207.07 944.6

rat783 8806 24862 182.33 1190.3

pr1002 259045 856431 230.61 1446

This table shows clearly that, when n is bigger, RDP becomes larger. These results

will be later compared to both the best and worst cases of hybrid approach GA-DP.

The third step consists to look for the impact of k (segment size) on solution quality

and time processing in GA-DP approach (Tables 3 to 5):

Hemmak Allaoua 38

Table 3: Results of GA-DP approach for k=5.
 PDP=0.6 PDP=0.7 PDP=0.8

instance Opt. Sol. RPD T. cpu Sol. RPD T. cpu Sol. RPD T. cpu

eil51 426 449 5.40 53.55 449 5.40 54.33 442 3.76 55.11

eil76 538 569 42.94 95.40 568 5.58 97.13 544 1.12 98.87

eil101 629 654 3.97 145.03 652 3.66 148.09 641 1.91 151.15

kroA100 21282 34201 60.70 138.58 33547 57.63 141.58 33129 55.67 144.58

kroA150 26524 39650 49.49 253.30 39186 47.74 260.05 36775 38.65 266.80

kroA200 29368 49021 66.92 379.05 48857 66.36 391.05 47360 61.26 403.05

lin318 42029 57005 35.63 850.91 52491 24.89 881.25 53087 26.31 911.58

rat575 6773 15128 123.36 2597.73 15005 121.54 2696.91 15018 121.73 2796.10

rat783 8806 14200 61.25 4255.75 14100 60.12 4439.67 13825 57.00 4623.60

pr1002 259045 589681 127.64 6466.02 541806 109.16 6767.22 487365 88.14 7068.42

Table 4: Results of GA-DP approach for k=10.
 PDP=0.6 PDP=0.7 PDP=0.8

instance Opt. Sol. RPD T. cpu Sol. RPD T. cpu Sol. RPD T. cpu

eil51 426 443 3.99 79.56 441 3.52 81.12 438 2.82 81.90

eil76 538 551 2.42 153.16 552 2.60 156.63 544 1.12 158.36

eil101 629 645 2.54 247.04 645 2.54 253.16 641 1.91 256.22

kroA100 21282 34167 60.54 238.58 33594 57.85 244.58 32518 52.80 247.58

kroA150 26524 37508 41.41 478.30 36843 38.90 491.80 36408 37.26 498.55

kroA200 29368 47891 63.07 779.05 47210 60.75 803.05 46337 57.78 815.05

lin318 42029 55843 32.87 1862.15 53008 26.12 1922.82 52994 26.09 1953.16

rat575 6773 14120 108.47 5903.98 13975 106.33 6102.35 13412 98.02 6201.54

rat783 8806 13914 58.01 10386.64 14250 61.82 10754.49 12807 45.43 10938.42

pr1002 259045 550890 112.66 16506.06 528045 103.84 17108.46 467290 80.39 17409.66

Table 5: Results of GA-DP approach for k=20.

Results reported in these tables show that GA-DP becomes more efficient for

biggest TSP instances size. On the other hand, when k increase, near solution is

better but processing time becomes more important. Also, the same remark when

PDP increase. The next step consists to show what is the best configuration in term

 PDP=0.6 PDP=0.7 PDP=0.8

instance Opt. Sol. RPD T. cpu Sol. RPD T. cpu Sol. RPD T. cpu

eil51 426 439 3.05 92.56 436 2.35 94.12 433 1.64 94.90

eil76 538 551 2.42 182.04 548 1.86 185.51 548 1.86 187.24

eil101 629 645 2.54 298.04 646 2.70 304.16 639 1.59 307.22

kroA100 21282 32837 54.29 288.58 30856 44.99 294.58 30890 45.15 297.58

kroA150 26524 38652 45.72 590.80 34278 29.23 604.30 33081 24.72 611.05

kroA200 29368 42673 45.30 979.05 41941 42.81 1003.05 41150 40.12 1015.05

lin318 42029 50558 20.29 2367.77 48792 16.09 2428.44 45552 8.38 2458.78

rat575 6773 12590 85.89 7557.10 11780 73.93 7755.48 11499 69.78 7854.66

rat783 8806 13666 55.19 13452.08 13251 50.48 13819.93 12074 37.11 14003.86

pr1002 259045 511211 97.34 21526.08 499802 92.94 22128.48 451007 74.10 22429.68

39 Combination Of Genetic Algorithm with

of two components (k,PDP). To find the best combination of these parameters, we

will choose three instances from the above ten instances used in our work, and then

we build the curves that represent solution and time processing in function of the

couple (k,PDP) (fig. 1 to 6).

Fig.1: Representation of near solution depending on (k, PDP) for eil51.

Fig.2: Representation of processing time depending on (k, PDP) for eil51.

Fig.3: Representation of near solution depending on (k, PDP) for kroA100.

420

430

440

450

460

Near solution

0
20
40
60
80

100

TIME CPU

28000

30000

32000

34000

36000

Near solution

Hemmak Allaoua 40

Fig.4: Representation of processing time depending on (k, PDP) for kroA100.

Fig.5: Representation of near solution depending on (k, PDP) for rat575.

Fig.6: Representation of near solution depending on (k, PDP) for rat575.

The shape of these curves show that when both k and PDP increase, near solution

becomes better but time processing becomes longer.

To more interpret these curves, we consider the portions where both near solution

and time processing are lower. For these 3 instances, this portion is reported in the

set of couples {(15,0.7); (15,0.8); (20,0.6); (20,0.7)}. This set represent a

0
100
200
300
400

TIME CPU

0

5000

10000

15000

20000

Near solution

0
2000
4000
6000
8000

10000

TIME CPU

41 Combination Of Genetic Algorithm with

compromise of segment size and DP probability that realize acceptable results in

terms of solution quality and time processing.

In the last step of our comparative study, we will dress the curves (figure 7) of near

solutions of both basic GA and case of GA-DP depending on 10 TSP instances

treated in this work. That to compare GA-DP with DP approaches efficiency.

Fig.7: Representation of near solution depending on TSP instances for basic GA

and best GA-DP.

This curve shows that for instances with biggest size, the gap between GA and GA-

DP becomes more significant, certainly that has a significant cost in term of time

but it still polynomial. For smaller instances with smaller size, this gap becomes

weaker.

6 Conclusion and perspectives

In this work, we have treated a variant of hybridizing genetic algorithm with

dynamic programming. We have chosen TSP since its significance in optimization

field in many situations where it can be used as a model to solve NP-Hard

optimization problems. In our approach, DP is integrated as a phase in the genetic

algorithm process with studied probability called PDP exactly like other genetic

operators such as selection, crossover, and mutation. Therefore, when this phase is

applied on an assumed generation, each chromosome is subdivided on a great

number of segments of size k, which was studied here. Since the exponential

complexity of DP, only small sizes of k are tested, that keep the hybrid approach in

polynomial class. Each segment is ordered by DP algorithm just before evaluation

phase of GA. According the results shown above we note that:

- Integrating DP improve considerably the quality solution, in contrast it has an

impact on the processing time compared to basic GA.

- The adjustment of both size of segment k and DP probability can clearly

converge to good compromise between solution quality and time processing.

0
10000
20000
30000
40000
50000
60000
70000
80000

basic GA Best GA-DP

Hemmak Allaoua 42

- In general, cases, hybridizing exact method with metaheuristic give certainly

best results than hybridizing only metaheuristics.

In other hand, according the cases treated here and the tests achieved, we propose

the following perspectives:

- The proposed approach can be used on other NP-Hard problems of operational

research as scheduling, linear programming, transport problems; it could give

good results better than existing metaheuristics.

- The fast evolution of computer power will allow treating biggest sizes of

segment that could open new horizons of this kind of hybridization.

- The introduction of scaling and sharing operations in GA will clearly improve

the GA efficiency despite their impact against time processing o GA.

Finally, we conclude that, by the present work, we have tried to provide a modest

contribution in the field of hybridization of exact method with meta heuristic as GA

and DP to seek for the best configuration that give better than using only meta

heuristic. We consider that the technology evolution will favorite hybridizing

approach as alternative to metaheuristics in optimization problems. We aimed to

provide a new tool at the disposal of researchers in the field that could participate

to improve their work results.

References

[1] Held, M., Karp, R.M.: A dynamic programming approach to sequencing

problems. Journal of the Society for Industrial and Applied Mathematics.

vol. 10, pp. 196--210 (1962)

[2] Lin, S., Kernighan, B.W.: An effective heuristic algorithm for the traveling

salesman problem. Operations Research, vol. 21, pp. 498--516 (1973)

[3] Kirkpatrick, S., Gelatt, C.D., Vechi, M.P.: Optimization by simulated

annealing. Science, new series, vol. 220, pp. 671--680 (1983)

[4] Aarts, H., Lenstra, H.L, Lenstra, K.: Local Search in Combinatorial

Optimization, pp. 215--310. Princeton University Press (1997)

[5] Eiben, A.E., Smith, J.E.: Introduction to Evolutionary Computing Natural

Computing. Series 1st edition. Springer (2003)

[6] Haykin, S.: Neural Networks: A Comprehensive Foundation, 2nd Edition.

Prentice-Hall (1999)

[7] Dorigo, M., Stutzle, T.: Ant Colony Optimization. Bradford Books, MIT Press

(2004)

[8] Teodorovic, D., Lucic, P., Markovic, G., Dell’Orco, M.: Bee Colony

Optimization: Principles and Applications. In: 8th Seminar on Neural Network

Applications in Electrical Engineering, pp. 151--156. IEEE Press (2006)

[9] Adlema, L.M.: Molecular Computation of Solutions to Combinatorial

Problems, vol. 266, pp. 1021—1024. Science (1994)

[10] Henry-Labordere, A.: The record balancing problem: A dynamic programming

solution of a generalized traveling salesman problem. RAIRO Operations

43 Combination Of Genetic Algorithm with

Research B2, 43--49 (1969)

[11] Fischetti, M., Salazar, J.J., Toth, P.: A branch-and-cut algorithm for the

symmetric generalized traveling salesman problem. vol. 45, pp. 378--394.

Operations Research (1997)

[12] Noon, C.E., Bean, J.C.: A Lagrangean based approach to the asymmetric

generalized traveling salesman problem. Operations Research. 39, 623--632

(1991)

[13] Snyder, L.V., Daskin, M.S.: A random-key genetic algorithm for the

generalized traveling salesman problem. European Journal of Operational

research. 174, 38--53 (2006)

[14] Paquete, L., Stützle, T.: A Two-Phase Local Search for the Biobjective

Traveling Salesman Problem. In: Second International Conference (EMO

2003), pp. 479--493. Springer, Heidelberg (2003)

[15] Chentsov, A.G., Korotayeva, A.G.: The dynamic programming method

in the generalized traveling salesman problem. Mathematical and Computer

Modeling. 25, 93--105 (1997)

[16] Yagiura, M., Ibaraki, T.: The Use of Dynamic Programming in Genetic

Algorithms for Permutation Problems. European Journal of Operational

Research. 92, 387--401 (1996)

[17] Lin, S., Kernighan, B.M.: An Effective Heuristic Algorithm for the Traveling-

Salesman Problem. Operations Research. 21, 498--516 (1973)

[18] Nourolhoda Alemi Neissi, Masoud Mazloom: GLS Optimization Algorithm

for Solving Travelling Salesman Problem. Second International Conference on

Computer and Electrical Engineering (2009)

[19] Bernd Freisleben, Peter Merz: New Genetic Local Search Operators Traveling

Salesman Problem. In: The 4th International Conference on Parallel Problem

Solving from Nature, pp. 890--899. Springer, Heidelberg (1996)

[20] Bernd Freisleben, Peter Merz: New Genetic Genetic Local Search for the TSP:

New Results. In: International Conference on Evolutionary Computation, pp.

159--164. IEEE Press (1997)

[21] Freisleben, B., Merz, P.: A Genetic Local Search Algorithm for Solving

Symmetric and Asymmetric Traveling Salesman Problems. In: Proceedings of

the 1996 IEEE International Conference on Evolutionary Computation, pp.

616—621 (1996)

[22] TSPLIB, http://comopt.ifi.uni-heidelberg.de/software/TSPLIB95/

[23] Renders, J.M.,Bersini, H.: Hybridizing genetic algorithms with hill- climbing

methods for global optimization: two possible ways. In: Evolutionary

Computation, 1994. IEEE World Congress on Computational Intelligence.,

Proceedings of the First IEEE Conference on. 1, 312 – 317 (1994)

[24] Wan-rong Jih, Hsu, J.Y.-J.: Dynamic vehicle routing using hybrid genetic

algorithms. In: International Conference on Robotics & Automation. 1, 453 –

458 (1999).

[25] PHAM D. T. et al. : A Survey on Hybridizing Genetic Algorithm with

http://comopt.ifi.uni-heidelberg.de/software/TSPLIB95/

Hemmak Allaoua 44

Dynamic Programming for Solving the Traveling Salesman Problem. In: 2013

Online Proceedings on Trends in Innovative Computing (ICT).

[26] Premalatha, K. and Natarajan, A.M. Hybrid PSO and GA Models for

Document Clustering. International Journal of Advances in Soft Computing and

its Application, 2,3 (2010), 1-20.

[27] Bahesti, Z. and Shamsuddin, S.M. A Review of Population Based Meta-

Heuristic Algorithm. International Journal of Advances in Soft Computing and

its Application, 5, 1(2013), 1-35.

[28] Hemmak Allaoua, Bouderah Brahim, Sieve Algorithm - A New Method for

Optimization Problems. International Journal of Advances in Soft Computing

and its Application, 5, 2(2013), 1-15.

	Combination of Genetic Algorithm with Dynamic Programming for Solving TSP
	Abstract

	1 Introduction
	2 Literature
	3 Basic GA presentation
	4 Proposed approach GA-DP
	5 Computational results and comments
	5.1 Instances
	5.2 System configuration
	5.3 Implementation setting
	5.4 Experimental results

	6 Conclusion and perspectives
	References

