
Int. J. Advance Soft Compu. Appl, Vol. 9, No. 2, July 2017 

ISSN 2074-8523 

 

Design of Secure Cryptographic Hash 

Function Using Soft Computing Techniques 

         S.Santhanalakshmi, Sangeeta K, G K Patra  

 

Department of Computer Science and Engineering, Amrita School of 

Engineering, Bengaluru, 

Amrita Vishwa Vidyapeetham, Amrita University,India. 

  s_lakshmi@blr.amrita.edu 

Department of Computer Science and Engineering, Amrita School of 

Engineering,Bengaluru, 

Amrita Vishwa Vidyapeetham, Amrita University,India. 

    k_sangeeta@blr.amrita.edu 

    Council of Scientific and Industrial Research, Fourth Paradigm Institute, 

Bangalore,India. 

      gkpatra@csir4pi.in 
 

Abstract 

          Data integrity is a crucial part of any secure system. 
Cryptographic hash functions serve as a basic building block of 
information security for ensuring data integrity and data origin 
authentication. They are used in numerous security applications 
such as digital signature schemes, construction of MAC and random 
number generation. A hash function takes an arbitrary amount of 
input and produces an output of fixed size. Many of the widely used 
cryptographic MD-5 and SHA-1 hash functions have been shown to 
be vulnerable to attacks. The non linear behavior of the neural 
network model which takes multiple inputs to produce single output 
makes it a perfect entrant for cryptographic hash design. The paper 
describes the construction of a cryptographic hash function using a 
multi layer Tree Parity Machine neural network. Although in our 
simulations we have considered 512 bit message blocks which 
generate 128 digit hash value, the proposed algorithm can be used 
flexibly to generate a hash function of arbitrary length. Simulations 
show that this hash function satisfies the security requirements of 
confusion, diffusion, and collision attack 

     Keywords: Hash Function, Tree Parity Machine, Neural Synchronization, 
Collision, Message Authentication Code.  

mailto:gkpatra@csir4pi.in


  

 

 

189                                                               Design of Secure Cryptographic Hash 

1      Introduction 

Data integrity provides assurance of data non- alteration either in transit or in 

storage, which is essential in business involving electronic commerce. This type 

of data assail can be prevented using a verifiable mechanism which strengthens 

integrity and provides an assurance that the data transactions, communications 

have not been intervened. Data integrity in cryptography is achieved by means of 

cryptographic hash functions, which can detect any modification and hence 

guarantee the integrity and source of information [1].  

Cryptographic hash functions may be unkeyed or keyed.  Unkeyed hash function 

also known as Modification Detection Code (MDC) take a single parameter i.e., 

message as an input. The most popular Modification Detection Code are SHA-1 

and MD5 [2] .SHA-1 is useful in “security applications and protocols” and MD5 

is used for “verification of integrity of electronically transmitted files”. However, 

successful collision attacks on the above cryptographic hash functions as 

discussed by Wang et al. [3] makes it unsecure and weak. This weakness of MD5 

apparently allows attackers to create multiple input sources to MD5 mapping that 

results in the same output. Wang et al. [4,5] have found hash collisions in the 160 

bit SHA-1 in approximately 263 operations rather than 280. Unkeyed hash 

functions without a key only provide data integrity [6,7] but no authentication. 

Keyed hash functions, on the other hand depends on two inputs – a message and a 

secret key to construct the Message Authentication Code (MAC), which provides 

data integrity as well as data origin authentication and is denoted by 

MAC =h (m|| k)  

Bellare et al [8-9], proposed “Keyed-Hashing for Message Authentication” 

(HMAC) which was shown to be secure against a number of subtle attacks. 

HMAC was defined here as H (key||H (key||message)), which performs an extra 

computation, i.e., the transitional result of the internal hash is masked by the outer 

application of the hash function which leads to enhanced security. Also HMAC-

MD5 does not endure from the same weakness of hash collision that has been 

found in MD5. It is summarized in RFC 6151 [10] that even if the security of 

the MD5 hash function itself is sternly compromised, collisions are not an issue in 

HMAC-MD5, which use inputs (the key) unknown to the attacker in construction 

of message digest. The most frequent attack in opposition to HMACs is brute 

force, which depends on the size of the key. Hence, the cryptographic power of 

the HMAC increases with the dimension of the secret key. Also HMAC calls for 

secret key management [11], i.e., during the operation the system must either keep 

the secret key all the time or access from its secured storage during the process.  

The challenge of key management can possibly be overcome by dynamic key 

generation at the time of communication. A number of dynamic key generation 

procedures have been proposed by using the concept of neural network. Neural 

networks due to its confusion, diffusion and non linearity properties [12] are 

extensively used in the design of cryptographic protocols and hash functions [13, 

https://tools.ietf.org/html/rfc6151
https://en.wikipedia.org/wiki/Hash-based_message_authentication_code#cite_note-11


 

 

 

 

 

 

S.Santhanalakshmi                                                                                              190 

 

 

 

 

 

14]. Shiguo et al., [15,16] described the construction of hash function based on 

neural networks. The authors demonstrated how one-way and diffusion property 

of neural network ensures reasonable output. The hash function proposed by 

Shiguo requires more arithmetic operations (mul/div/add/sub), which can be 

drastically reduced in a parallel-realization. 

Neural Network based secure hash function that uses “Piecewise Linear Chaotic 

Map (PWLCM)”  and key generator, as an activation function and for initialization 

of parameters was proposed by Lian et al. [17]. This could execute only in 

sequential mode, and a parallel keyed hash function based on the chaotic neural 

network (CNN) was later proposed by Xiao et al. [18]. Limitation of this 

algorithm lies in the secret key (nonce numbers) i.e., the keys lose their security 

level if used more than once and would lead to some security flaws. These flaws 

have been prevailed by Z Huang [19], where he uses hash mixer which consists of 

two parts. The first part to determine the intermediate hash value and in the 

second part to establish the transverse connections to the different part of the hash 

value by using yet another double layer CNN. Using PWLCM and a “4-

Dimensional One-Way Coupled Map Lattices (4D OWCML)” as an activation 

function and key generator a new hash algorithm based on two-layer CNN was 

proposed by Li et al. [20]. ln all of these above  hash algorithms based on neural 

network, key generation and hash value generation are two distinct functions. 

In our work, we are proposing using of a similar multi layer neural network called 

Tree Parity Machine (TPM) for both key and hash generation. The following 

section explains in detail how the key is generated using neural key exchange 

process. The hash generation algorithm described in section 3 uses this generated 

key to construct the hash of a given message. The projected hashing scheme make 

a secure hash function which satisfies the required confusion and diffusion 

properties. This has been described as a part of performance analysis in section 4. 

Comparison and Computational analysis has been discussed in section 5. With the 

help of simulations, conclusions are described in section 6. 

2      Key Generation Using Neural Cryptography 

Exchange of secret keys over public channels using a variety of learning rules 

offer an pleasing alternative to number theory based cryptography algorithms. 

Neural key exchange, discussed by Kanter et al. [21] is based on the 

harmonization of two neural networks.   

The Tree Parity Machine (TPM) shown in Fig 1 is an exceptional class of multi-

layer neural network which contains one output neuron (τ), ‘K’ hidden neurons (σk, 

k= 1…K) and ‘N’ input neurons ( .Inputs to the network take bipolar 

values:  . The discrete random weights Wki are initialized linking 



  

 

 

191                                                               Design of Secure Cryptographic Hash 

input and hidden neurons in the range (-L, L). The value of each hidden neuron is 

computed as   and the final output . 

Training two such TPM’S on their common output coordinate to an identical time 

dependent weight vector. The identical weights obtained from the synchronization 

are the keys. This process has been used for construction of secure cryptographic 

secret-keys on a public channel. Substitution of random weights with optimal 

weights generated by genetic algorithm leads to a faster synchronization of the 

TPM as discussed by us [22]. The TPM’s using the genetic approach, was able to 

coordinate faster because of the best optimal weights achieved from genetic 

process. These optimal weights not only fasten the synchronization process but 

also considerably reduce the probability of attackers. This method of key 

generation is efficient in the sense that for each message if needed a fresh key can 

be generated without any data been stored internally. The efficiency of the 

network can be further improved by increasing the number of neurons either in 

the input or hidden layer [23] to get a secure key. The key so generated is tested 

for its randomness [24] and the same can be used to define a hash function which 

will be described in the next section. 

 
 

Fig 1: Tree Parity Machine for Key generation 

3      Proposed Cryptographic Hash Function 

The HMAC uses the cryptographic hash function in association with the 

secret  key. 

       Keyed Hash (MAC) = Hash (Key || Message)                                     Eq 1. 

“Hash functions take in data of arbitrary length as input called message M and 

produce an output of fixed size often referred to as message digests” (RSA 

Laboratories) represented by H = h(M). The properties that good hash functions 

should possess are as follows [28]. 

1. "Pre- image resistance: Given H(x),  it should be tough to find x. 

2. Second pre- image resistance: Given message m1, it should be hard to find 

another message  m2 such that         

     

https://en.wikipedia.org/wiki/Cryptographic_hash_function
https://en.wikipedia.org/wiki/Cryptographic_key


 

 

 

 

 

 

S.Santhanalakshmi                                                                                              192 

 

 

 

 

 

3. Collision resistance: It is hard to find any two distinct messages m1, m2 such 

that 

    ”  

In this section we describe the generation of hash function using the TPM 

network. Here the TPM network is used for generating key as well as for the 

computation of Hash. 

The generation of keyed hash comprises of two stages, viz. pre processing stage 

and computation stage.  

 In pre-processing stage, the message is split into blocks (Bi, i = 1 to N) of size 512 

bits each. The length of the message expressed as a 64 bit binary, is appended to 

the message. Between the end of the message and the length field, a pad is 

inserted so that the message padding length is a multiple of 512, the block size. 

Each block (Bi) is further split into an array of 16 words, each 32 bit wide as 

shown in Fig 2.  

Procedure of Hash Computation using the TPM network can now be described as 

follows:   

For each block Bi, of 512 bits with i = 1 to N,  

The neural network shown in Fig 3 is initialized at time t =1 with input neurons 

Mij (i= 1 to 8, j= 1 to 4) obtained from the first 32 bits of the message Mt. The 

weights (Kji), (i=1 to 8, j=1 to 4)     in the TPM corresponds to the key generated 

from the synchronization of two TPM’S as described in section 2 . Following 

steps are now repeated iteratively from t=1 to t=16 

•  The hidden values   are computed and hex values of 

 are saved as Ht.  

• The output   of the network is computed and compared with  

 (σj ) 

• Weight vectors are now updated  at next time step for those branches of 

the  TPM  where σj = τ  as per the relation 

 Kji (t+1) = Kji (t) + Mt +1  

H= Ht | Ht+1 

 Repeat this until the whole message is consumed from Bi , Finally 512 bit MAC 

value is obtained by performing AND operation on all Bi, i=1 to N.  

                       32 

 

 Fig 2: Message Block Bi  of 512 bits 

M1 

M2 

M3 

                      . 

                      . 

M16 

TPM NN …..

……

… 

TPM NN 

H128 H1…………….. 



  

 

 

193                                                               Design of Secure Cryptographic Hash 

 
 

Fig 3 TPM for Hash Computation 

4      Performance Analysis  

Hash function should satisfy the properties like one way and Collision resistance. 

We extremely assess the proposed algorithm, and the results exemplify that it has 

good potential of confusion and diffusion, and strong collision resistance. The 

performance analysis of the proposed hash function is discussed in this section. 

 

4.1  Diffusion Analysis: 

A hash function has to be sensitive to any small modification in the input 

message, so that it will be difficult to predict the original message from its hash 

value. It is expected that any small change in the message or secret key input 

should lead to 50% change in its hash value, where the difference between two 

hash values is measured in terms of their Hamming distance. To test the 

sensitivity the following input message has been considered “The quick brown 

fox jumps over the lazy dog”. 

Diffusion is associated with the dependency of the output bits on the input bits. 

Here we have considered the messages with the following cases, such as adding 

null space at the end of the message, replacing a word by another word and so on 

and their hash values are computed. The changes in the computed hash value for 

each case  is calculated and shown in Table 1. 

 

Table 1: Sensitivity of the Hash Algorithm for the input message “The quick 

brown fox jumps over the lazy dog” 

 
Case 

No. 

% Change 

in Original 

Message 

Hash Value (512 bits) % 

Change 

in the 

Hash 

Value 

1 0 00f6f2f7fe06f8010404e0fdf4fe0201e2eefeff020606f7fc0804f

1e808f0e90a08f2f5fe00fcfbeef4faedfe06f8f7fe06f6f5fc06f8f3

0 



 

 

 

 

 

 

S.Santhanalakshmi                                                                                              194 

 

 

 

 

 

fa06fe6ff606fc2f 

2 1-2 0e090410f50010c02eb06ffe2050603e010c0e03f8f5f2ede2e3e

8edfefff83f4f1f605feef0eff00ff0ef7f0ebf4f112e95df60902edf

60700edf609feedf40 

 

>80 

 

3 2-3 f8801020502eb0607e0090603f403f6fbf6ede0e5e8ed0007f3f8

f1ec05feef0c0f3eee9eced0ce3fc036e9fc0906e9fc0704e9f30f0

ff02c0902e9fc0ffe110 

 

>90 

 

4 3-4 1fde800bedf2f8e3ebf6fa5bf7e0c090cfe0ef207e5f80621fffe04

1df3f2f4120c0908fac090afe0c0906f80c0906fa0c09 

08fc0c0908fc0c0904fc c20904fc 

 

>80 

 

5 4-5 b9f7ecfa11fffcec30ff504007ede4f807e7f8fc37f5e6001d0304f

2e50100204e32100f08719fa06a50df60423f 

a00a111b02060ffb02040ff904060ff9080c 

 

80-90 

 

6 5-6 eccfa2f7c558a047269ca3b0a61dd2c546ac0d79fcc903d0f6435

d6a63fc74daba413a06d627a96620a2625148c57c79a099c 

f9c502273a8759ebec4f8572fed 

 

>90 

 

 

For ideal diffusion, any slight modification in the plain text should lead to 50% 

change in the bit series of the message digest. To get a deeper insight into the 

diffusion property of the discussed hash function the input message M of 1024 bit 

length is taken and its corresponding hash value is computed. By modifying the ith 

(i=1…1024) bit of M, the new message M’ and its corresponding hash value is 

generated. It has been observed that the hamming distances vary between 163 and 

350 for above messages. The average hamming distance is 256.5. Ideally the 

hamming distance between the original message and the modified message is 

expected to be 256 which agree with our observed result. 

  In order to analyze the diffusion effect [25, 26] we consider the binary form of 

text given in previous case (1) as original message and compute its 512-bit hash 

value.  This message is now modified by selecting a random bit and flipping it. 

The hash value of the modified message obtained after flipping one bit is then 

computed. The Hamming distance is used to measure the change in the hash value 

arising from any change in the original binary message. The Hamming distance 

between this hash value and the hash value of the original message is found. The 

above procedure is repeated N times and the following measures are computed: 

• “Minimum Hamming Distance       :     

•  Maximum Hamming Distance       :     

• Mean Hamming Distance              :         

• Mean probability                           :   

• Std. dev of the Hamming Distance                 :  

• Standard deviation     

”  



  

 

 

195                                                               Design of Secure Cryptographic Hash 

        

 Table 3:  Statistics of number of changed bits. 
 

 

 

 

 

 

 

 

It is clear 

from the resultant data in Table 3 that the  mean altered bit number (B)  and the 

mean altered probability (P) are both very close to the ideal value 256 bits and 50 

%. Also, ΔB and ΔP indicate little deviations about the mean value, which in turn 

indicates, the projected hashing method has very strong potential for confusion 

and diffusion. Thus, the above proposal is safe against diffusion attacks.  

 

4.2  Distribution of hash value 
 

The most significant properties, that is honestly associated to the security of the 

hash function is the uniform distribution of hash value. To show this the ASCII 

values and the message digest for the message “Hash function takes a message as 

input and produces an output referred to a hash value. A hash value serves as a compact 

representative image of input string. Hash function takes a message as input and 

produces an output referred to a hash value. A hash value serves as a compact 

representative image of input string” is generated and it has been observed in Fig 

4(a-b) that Hexadecimal values for the message are confined to a small area, while 

the hash value in hexadecimal spreads around the entire area.  

0 100 200 300 400 500
30

40

50

60

70

80

90

100

110

120

Character Sequence number

A
S

C
II

 v
a
lu

e

 

Statistical 

measures 

N-256 N=512 Mean 

 
162 162 162 

 
350 352 355 

 256 257 256.5 

 
50 50.19 50.1 

 
10.31 10.25 10.28 

 4.72 4.86 4.79 



 

 

 

 

 

 

S.Santhanalakshmi                                                                                              196 

 

 

 

 

 

Fig 4a Distribution of the message in ASCII code  

0 20 40 60 80 100 120 140
0

5

10

15

Hexadecimal code sequence number

H
e
x

a
d

e
c
im

a
l 

v
a

lu
e

 
Fig 4b Distribution of the hash value in hexadecimal format. 

  

Another similar experiment shown in Fig 5(a-b) is done with a message equal to 0. 

Even in this intense condition we can see the spread of the hash value of the 

message “0” is still uniform 

Spread of message and hash value: (a) distribution of the message in ASCII code 

and (b) distribution of the hash value in hexadecimal format. 

0 5 10 15 20 25 30 35 40 45
-1

-0.5

0

0.5

1

Character Sequence number

A
S

C
II

 v
a
lu

e

 



  

 

 

197                                                               Design of Secure Cryptographic Hash 

Fig 5a: Distribution of message ‘0’ in ASCII code 

 

0 20 40 60 80 100 120 140
0

5

10

15

Hexadecimal code sequence number

H
e
x
a
d
e
c
im

a
l 
v
a
lu

e

 
        

Fig 5b: Distribution of hash value of ‘0’ message 

 

4.3  Collision analysis 

 “A hash function is collision resistant if it is computationally infeasible to find 

two messages M, M’ that will get hashed to the same output i.e., h(M) =h(M’)”. 

Birthday attacks are similar in idea, where two random input data have to be 

found such that they hash to the same output. The safety of the hash function for 

birthday attacks is resolute by the length of the hash value, which is 512 bit in our 

proposed function, hence the attack difficulty is 2256 [27].  Further by modifying 

the size of neural network, the hash value for larger bits can be obtained. 

Therefore, even with the advancement in computing power, the proposed hash 

function can defy this kind of attack. 

4.3.1  Collision test 

 

 In turn to investigate the collision resistance capability of the hashing approach 

the following collision test [28] is carried out: First, the input message given in 

section 4 is chosen randomly and the message digest is produced and stored in 

ASCII format [29-30]. Then a bit series in the binary form of the message is 

chosen arbitrarily and changed and new digest is then generated and stored in 

ASCII format. The absolute difference (ad) of the two hash results is computed by 

using the following formula:  



 

 

 

 

 

 

S.Santhanalakshmi                                                                                              198 

 

 

 

 

 

          

 

here  and     represent the ith ASCII character of the message digest for the 

original message and the modified message, respectively, and dec( ) maps these 

ASCII values  to their corresponding decimal values. This simulation is run for 

1000 times, each time changing the random bit of the original message. The 

absolute difference of the hash values is recorded every time.  From this sequence 

of hash values the maximum, minimum and mean values of the absolute 

difference are obtained as shown in Table 3. 

 

  Table 3:  Absolute difference for hash values of length 512 

Maximum Minimum Mean 

7421 4671 2603 

 

The above results suggest that a small change in input leads to a considerable 

change in the output message so having the probability of having two messages 

with same output is very low. Fig 6 shows the number of positions shared by the 

512 bit hash values where the ASCII values are same for N = 1000. 

0 1 2 3 4 5 6
0

200

400

600

800

1000
(0,997)

(1,2) (2,1) (3,0) (4,0) (5,0) (6,0)

No.of equal Entries

N
o
. 

o
f 

H
IT

S

  
Fig 6: Positions where the ASCII characters are identical.  

 

 4.4  Security Analysis 
 

Attacking strong collision resistance is analogous to the Birthday Paradox. The 

Birthday attack can be launched in time O(n1/2) where n = 2w  . Hence, a 64 bit 

hash value (w=64) is extremely   vulnerable. Partly in response to this concern, 

hashes of length 128 and above are widely used. Unfortunately, even these have 



  

 

 

199                                                               Design of Secure Cryptographic Hash 

recently been shown to be vulnerable. For example, Wang et al. found hash 

collisions in the 160 bit SHA-1 in approximately 263 operations rather than 280.  

For one of that demand stringent security, one of the proposed neuro- hash 

functions of length 512 can be recommended. 

 

5  Comparison Analysis 
Here, we compare our proposed method with some obtainable hash functions, 

particularly those based on neural networks. Table 4 and 5 present the numerical 

results for 128 bit and 512 –bit hash values of some known obtainable hash 

functions [18, 26, 31-33]. It can be concluded from these tables that the projected 

hashing method is very close to that of an ultimate cryptographic hash function. 
          

Table 4: Absolute difference for the 128 bit hash values generated when N=2048 

 

Hashing 

Method 
Max Min Mean Mean/character 

Proposed 

Method 
2453 832 1530.5 95.65 

Ref. [31] 2221 696 1506 94.125 

Ref.[26] 2230 731 1368 85.5 

Ref. [18] 2156 658 1431.3 89.456 

Ref. [33] 2224 573 1401.1 87.569 

Ref. [32] 1952 605 1227.8 76.738 

 

Table 5: Absolute difference for the  values generated when n=N=512 

Hashing 

scheme 

Maximum Minimum Mean 

Our Scheme 7421 4671 5830 

Ref.[26] 7081 4658 5778 

 

The performance will vary not only between algorithms, but also with the specific 

implementation and hardware used. Table 6 shows the number of rounds and 

operators required for different hash algorithm [34]. 

 

Table 6:  Comparison of Hash functions 

 
Algorithm and variant Output size  (bits) Rounds Operations 

MD5 128 64 And, Xor, Rot,Add 

(mod 232), Or 

SHA-1 160 80 And, Xor, Rot,Add 

(mod 232), Or 

SHA-256 256 64 And, Xor, Rot, Add 

(mod 232), Or,Shr 

SHA-512 512 80 And, Xor, Rot,Add 

(mod 264), Or,Shr 

Proposed Hash 512 16 Mul, Add, 

And 

  



 

 

 

 

 

 

S.Santhanalakshmi                                                                                              200 

 

 

 

 

 

6. Conclusion 
In this paper, a hash function based on TPM neural network is proposed, which 

uses the general iterative structure of Hash function. In the TPM neural network 

the output feedback model is employed, its output not only depends on the input 

and parameters of the neural network, but also its status. This dependence is 

enhanced by iterating the NN, which is very useful to improve the efficiency of 

Hash function. The proposed hash function has been analyzed for its randomness 

and security using numerical simulations. . Results indicate that the hash function 

is simple, competent, realistic, and trustworthy and hence can be a good aspirant 

for data integrity. It holds high message sensitivity and good statistical properties. 

Furthermore, this algorithm provides the litheness to increase the hash length to 

any random length, which makes the system opposing to birthday attack for 

hashes greater than 512 bits.  

References 
[1] A. Menezes, P. Van Oorschot, S. Vanstone. (1996). Handbook of applied 

cryptography. CRC  Press. 

[2] [Harshvardhan Tiwari , Krishna Asawa (2012). A secure and efficient 

cryptographic hash function based on NewFORK-256.  Egyptian 

Informatics Journal (2012) 13, (pp. 199–208). 

[3]  X. Wang, H. Yu. (2005). How to break MD5 and other hash functions. in: 

Proceedings of Eurocrypt’05. (pp. 19–35). Aarhus, Denmark 

[4] Wang X, Yin YL, Yu H.(2005). Finding collisions in the full SHA-1. In: 

Advances in cryptology-crypto 05 proceedings. Lecture notes in computer 

science, 3494. (pp. 17–36). Springer-Verlag. 

[5] Wang X, Feng D, Lai X, Yu H. (2004).  Collisions for hash functions 

MD4, MD5, HAVAL-128 and RIPEMD, IACR Cryptology . ePrint 

Archive, (pp. 199). 

[6] A. Kanso , M. Ghebleh, (2013). A fast and efficient chaos-based keyed 

hash function”,Commun Nonlinear Sci Numer Simulat 18 (pp. 109–123) 

[7] Zhang J, Wang X, Zhang W.( 2007). Chaotic keyed hash function based 

on feedforward-feedback nonlinear digital filter. Phys Lett A; 362. (pp. 

439–448). 



  

 

 

201                                                               Design of Secure Cryptographic Hash 

[8] M Bellare, R. Canetti, H Krawczyk,(1996).  Keying hash function for 

message authentication, LNCS, 1109, ,.(Advances in Cryptology-

CRYPTO ’96). (pp.1-15). Springer Verlag. 

[9] Bellare, Mihir (June 2006). New Proofs for NMAC and HMAC: Security 

without Collision-Resistance. In Dwork, Cynthia. Advances in Cryptology 

– Crypto 2006 Proceedings. Lecture Notes in Computer Science 4117. 

Springer-Verlag.  

[10] "RFC 6151 (March 2011).Updated Security Considerations for the 

MD5 Message-Digest and the HMAC-MD5 Algorithms. Internet 

Engineering Task Force.  Retrieved 15 June 2015. 

[11] Secure Hash Standard. Federal Information Processing Standards 

Publications (FIPS PUBS) 180-2,2002. 

[12] Douglas R Stinson, .(1996) Cryptography Theory and Practice. 

CRC Press. 

[13] D.A. Karras and V. Zorkadis.(2003). On neural network techniques 

in the secure management of communication systems through improving 

and quality assessing pseudorandom stream generators. Neural Networks, 

Vol. 16, No. 5-6, (pp. 899-905). 

[14] C.-K. Chan and L.M. Cheng.(March 2001) The convergence 

properties of a clipped Hopfield network and its application in the design 

of key stream generator, IEEE Transactions on Neural Network. Vol. 12, 

No. 2(pp. 340-348). 

[15] Shiguo Lian, Zhongxuan Liu, Zhen Ren, Haila Wang. (2006). Hash 

Function Based on Chaotic Neural Networks.(pp.237-240). IEEE. 

[16] ShiguoLian,Jinsheng, Sun,ZhiquanWang(2006).One-

wayHashFunction Based on Neural Network. Journal of Information 

Assurance and Security.(pp.1-7) 

[17] S. Lian, J. Sun and Z. wang,. (2006). Secure hash function based 

on neural network. Neurocomputing, vol. 69. (pp. 2346-2350). 

http://cseweb.ucsd.edu/~mihir/papers/hmac-new.html
http://cseweb.ucsd.edu/~mihir/papers/hmac-new.html
https://tools.ietf.org/html/rfc6151
https://tools.ietf.org/html/rfc6151


 

 

 

 

 

 

S.Santhanalakshmi                                                                                              202 

 

 

 

 

 

[18] D. xiao, X. Liao and Y. wang.(2009). Parallel keyed hash function 

construction based on chaotic neural network”, Neurocomputing, vol. 72. ( 

pp. 2288-2296). 

[19] Zhongquan Huang.(2011). A more secure parallel keyed hash 

function based on chaotic neural network.  Commun Nonlinear Sci Numer 

Simulat,vol.16.(pp. .3245-3256). 

[20] Y. Li, S. Deng and D. Xiao.(2011). A novel hash algorithm 

construction based on chaotic neural network”, Neural Comput & Applic, 

vol.20. (pp. 133-141). 

[21] I.Kanter, W.Kinzel, E.Kanter(2002). Secure Exchange of 

Information by Synchronization of Neural Networks”, Europhys Lett 57, 

(pp. 141-147). 

[22] S .Santhanalakshmi,TSB Sudarshan,G K  Patra (2012). Neural  

Synchronization by Mutual Learning Using Genetic Approach for Secure   

Key Generation. Recent Trends In Computer Networks and Distributed 

System CCIS  Volume 335,  (pp.  422-430). Springer-Verlag, 

[23] S.Santhanalakshmi, Sangeeta K,G K Patra (2015). Analysis of 

Neural Synchronization using Genetic approach for Secure Key 

Generation.  Third International Symposium on Security in Computing and 

Communications (SSCC) CCIS  Volume356,.(pp. 207-216). Springer-

Verlag 

[24] S .Santhanalakshmi, Sangeeta K,G K Patra(2014).cSecure Key 

Stream Generation using Computational Intelligence Methods. IJCTA-

Volume 5 Issue 3 (pp. 967-972). 

[25] Harshavardhan Tiwari,Krishna Asawa (2012)  A Secure and 

efficient cryptographic hash function based on New FORK-256. Egyptian 

Informatics Journal 13,.(pp.  199-208). 

[26] A. Kanso , M. Ghebleh. (2013). A fast and efficient chaos-based 

keyed hash function. Commun Nonlinear Sci Numer Simulat 18 (pp.  109–

123). 



  

 

 

203                                                               Design of Secure Cryptographic Hash 

[27] Yong Wang, Xiaofeng Liao, Di Xiao, Kwok-wo Wong. (2008). 

One-way hash function construction basedon 2D coupled map lattices.  

Information Sciences 178 (pp. 1391–1406)  

[28] Zhang J, Wang X, Zhang W. (2007). Chaotic keyed hash function 

based on feedforward-feedback nonlinear digital filter.  Phys Lett A 362. 

(pp. 439–448). 

[29] Maokang Du,Bo HE, Yong Wang,Jianjun Wu, Di Xiao(2009). 

Parallel Hash function Based on Block cipher”, International conference 

on E-business and Information System Security . 

[30] D.Xiao,Xiaofeng Liao,Kwok-Wong. (2006). Improving the 

Security of dynamic Look-Up Table Based Chaotic Cryptosystem.  IEEE 

transactions on Circuits and SystemsI, Vol 53 issue 6. 

[31] Xiao D, Liao X, Deng S. (2005). One-way hash function 

construction based on the chaotic map with changeable-parameter. Chaos 

Solitons.Fract2005:24(386) pp. 65–71. 

[32] Xiao D, Liao X, Deng S. (2008). Parallel keyed hash function 

construction based on chaotic maps. Phys Lett A 372. (pp. 4682–8). 

[33] Xiao D, Shih F, Liao X. (2010). A chaos-based hash function with 

both modification detection and localization capabilities. Commun 

Nonlinear Sci Numer Simul 15(9) (pp. 2254–61). 

[34] Comparison of Hash cryptographic hash function .Wikipedia     

 

 


