
Int. J. Advance Soft Compu. Appl, Vol. 8, No. 3, December 2016
ISSN 2074-8523

Cell-DROS: A Fast Outlier Detection Method
for Big Datasets

Duong Van Hieu1 and Phayung Meesad1

1Faculty of Information Technology,

King Mongkut’s University of Technology North Bangkok, Thailand
e-mail: dvhieu@gmail.com, duongvanhieu@tgu.edu.vn

pym@kmutnb.ac.th

Abstract

 Outlier detection is one of the obstacles of big dataset analysis
because of its time consumption issues. This paper proposes a fast
outlier detection method for big datasets, which is a combination of
cell-based algorithms and a ranking-based algorithm with various
depths. A cell-based algorithm is proposed to transform a very large
dataset to a fairly small set of weighted cells based on predefined
lower and upper bounds. A ranking-based algorithm with various
depths is modified and applied on weighted cells to calculate outlier
scores and sort cells based on their outlier scores. Finally, an outlier
obtaining algorithm is proposed to identify ids of outliers from the
ranked cells and eliminate outliers from the given datasets.
Experiment results show that the proposed method can produce the
same results when compared to the previous rank-difference outlier
detection algorithm but it can reduce up to 99% of executing time.

 Keywords: Cell-based outlier detection, Rank-based outlier detection, Outlier
detection, Outlier detection in big datasets.

1 Introduction
Outlier analysis is an important process in the data science field because of its
applicability to various sorts of different problems including military surveillance,
fault detection in safety systems, security intrusion detection, and credit card fraud
detection, etc. [1]. An outlier is defined as an observation which deviates highly
from the remaining observations [2]. The outlier objects may be generated by
different sources or mechanisms compared to the remaining objects in the same
datasets. Outlier objects or outliers are sometimes called abnormal, deviant, or
discordant objects [3].

Duong Van Hieu and Phayung Meesad 2

Outlier detection algorithms normally find models of normal objects from
provided datasets. Hence, outliers are objects which do not fit those normal
models. Results of outlier detection algorithms are normally in one of two forms.
The former is the binary labelling results; each object is assigned a label ‘normal’
or ‘outlier’. On the other hand, the later assigns a real value as outlier score to
each object and sorts objects in a descending order based on the outlier scores.
The top k sorted objects are considered as k outliers [4].

Fig. 1: An example of a dataset having 2 clusters and 2 outliers.

The well-known outlier detection algorithms including density-based local outlier
factor (LOF) [5], connectivity-based outlier factor (COF) [6], influential measure
of outliers by symmetric neighborhood relationships (INFLO) [7], rank-based
detection algorithms (RBDA) [8], and ranking combined with clustering
algorithms (ODMR, ODMRD) [9] have limitations in terms of using density. The
LOF and COF algorithms which uses k nearest neighbors may produce poor
results when outliers are located between low and high density clusters, the
INFLO algorithm may produce incorrect outliers because it uses an assumption
that all neighbors of an object have the same density, results of the RBDA,
ODMR, ODMRD algorithms could be negatively affected by local irregularities
of datasets.

Recently, to overcome the limitations of the aforementioned well-known outlier
detection algorithms, a precise outlier detection method based on multi-time
sampling [10] and a ranking-based outlier detection algorithm with various depths
(RDOS) [11] have been proposed. It was reported that the newly proposed
algorithms can produce very high precise results compared to the previous
algorithms. However, these new algorithms cannot be applied to datasets having
large numbers of objects due to very long execution time.
High precise outlier detection algorithms are usually extensively computational.
When datasets have a very large number of objects, detection of outlier objects in
those datasets is a challenging problem [12]. This paper proposes a fast outlier

Cluster 1

Cluster 2

Outlier 2 Outlier 1

3 Cell-RDOS: A Fast Outlier Detection Method

detection method which is a hybrid of cell-based algorithms and the ranking-
based outlier detection algorithm with various depths. This proposed algorithm
(abbreviated to Cell-RDOS) should be an appropriate outlier detection method for
datasets with a very large number of objects.
Contributions of the proposed Cell-RDOS method are very significant to outlier
analysis in the big data era. Firstly, a cell-based method is proposed to transform a
very large dataset into a fairly small set of weighted cells based on the predefined
lower and upper magnitudes. Secondly, a revised version of the ranking-based
outlier detection algorithm with various depths will be applied to the sets of
weighted cells to calculate outlier scores of cells and rank cells based on the
outlier scores. Finally, an outlier obtaining algorithm is proposed to identify
outlier objects from the ranked cells and remove outliers from the provided
datasets. The proposed Cell-RDOS method can produce the same results as the
RDOS algorithm but it can reduce up to 99% execution time of the RDOS
algorithm.

The rest of this paper is organized into four sections. Section 2 is related
literatures. Section 3 explains the proposed Cell-DROS method. Section 4 covers
experiments and results. Last but not least, conclusions and discussions are
covered in Section 5.

2 Related Work
This paper focuses on the second form of outlier detection results. The outlier
detection algorithms assign real values as outlier scores to objects and rank them
in a descending order based on their outlier scores. The top k ranked objects are
considered as k outliers. For instance, the object 122 in Table 1 should be
considered as an outlier.

Table 1: An example of sorted objects associated with outlier scores.

Object IDs Outlier Scores
122 1,429.75
18 211.79
207 120.34
177 96.93
192 82.82
91 70.01
… …

The first algorithm belonging to this ranked-based strategy is to use local outlier
factor (LOF) [5]. This density-based outlier ranking algorithm initially computes
abnormal degrees of all objects based on the definitions of local reachability
density and k-distance neighbors. Then, objects are ordered based on abnormal
magnitudes. The top k objects with the highest abnormal magnitudes are

Duong Van Hieu and Phayung Meesad 4

considered as top k outliers. Let p, o be objects, k be a positive integral number, X
be a set of objects, and k-distance(p) or d(p, o) is a distance between p and o X
such that:

1. Having at least k objects o’X\{p} satisfy d(p, o’)  d(p, o),

2. And, having at most k-1 objects o’X\{p} satisfy d(p, o’) < d(p, o).

k-distance neighbors of an object p are objects whose distances from p are not
greater than k-distance(p) and denoted by (1).

 N k-distance(p)={qX\{p}|d(p, q)  k-distance(p)} (1)

Reachability of an object p with respect to an object o is defined by (2), local
reachability density of an object p is defined by (3), and local outlier factor of an
object p is defined by (4).

 reach-distk(p, o)=max{k-distance(o), d(p, o)} (2)

(ܘ)௞݀ݎ݈ = ଵ
∑ ೝ೐ೌ೎೓ష೏೔ೞ೟ೖ(ܗ,ܘ)ܗ∈ಿೖ(۾)

หಿೖ(ܘ)ห

 (3)

(ܘ)௞ܨܱܮ =
∑ ೗ೝ೏ೖ(ܗ)

೗ೝ೏ೖ(ܘ)ܗ∈ಿೖ(ܘ)

|ேೖ(ܘ)|
 (4)

Fig.2: An illustration of k-distance (o) and reach-dist k (p,o).

The LOF algorithm is extensively computational when working with datasets
having large numbers of objects. To improve results of the LOF algorithm when
working with low density patterns, connectivity-based outlier factor (COF) was
proposed [6]. The COF of an object p is defined as ratio of its average chaining
distance with average chaining distances of its k nearest neighbors. A distance
between two disjoined-subsets P and Q of X is defined as the minimum distance
between object xP and yQ. A set based nearest path, SBN-path, from p1 of
length r is a sequence <p1, p2,…, pr> in such a way that pi+1 is the nearest
neighbor of the set {p1, p2,…, pi} with 1  i  r-1. A set based nearest trail, SBN-

p2

o

݇ − (ܗ)݁ܿ݊ܽݐݏ݅݀

ℎܿܽ݁ݎ − (ܗ,ଶܘ)௞ݐݏ݅݀ = p1 (ܗ,ଶܘ)݀

−ℎܿܽ݁ݎ ൯ܗ,1ܘ൫݇ݐݏ݅݀ = ݇ − (ܗ)݁ܿ݊ܽݐݏ݅݀

5 Cell-RDOS: A Fast Outlier Detection Method

trail, with respect to the SBN-path <p1, p2, …, pr> is defined as an ordered
collection of r-1 edges <e1, e2, …, er-1> with 1  i  r-1 and ei=(oi, pi+1) where
oi{p1, p2,…, pi}. The average chaining distance from an object p to Q\{p} is
defined by (5) and the connectivity-based outlier factor of an object p with respect
to its k neighbors is defined by (6).

ac − dist୕(p) = ଵ
୰ିଵ

∑ ଶ(୰ି୧)
୰

dist(e୧)୰ିଵ
୧ୀଵ (5)

(ܘ)௞ܨܱܥ =
|ேೖ(ܘ)|௔௖ିௗ௜௦௧ಿೖ(ܘ)(ܘ)

∑ ௔௖ିௗ௜௦௧ಿೖ(ܗ)(ܗ)ܗ∈ಿೖ(ܘ)
 (6)

Similar to using LOF, when connectivity-based outlier factor values of all objects
are gained, objects are ordered in a descending order based on the magnitudes of
connectivity-based outlier factor values. Objects having the highest connectivity-
based outlier factor are considered as outliers. Using COF might be better than
using LOF in the case of provided datasets containing low density patterns.
Nevertheless, using COF is more computational than using LOF. Thus, the COF
and LOF algorithms are inappropriate to work with big datasets.
To be able to achieve more accurate outliers in more complex situations,
influential measure of outliers (INFLO) was proposed [7]. Unlike LOF and COF
algorithms, INFLO algorithm uses reverse nearest relationships to measure outlier
degrees of objects. Influential measure of an object p is defined as ratio of density
in its neighborhood with average density of objects in its reverse nearest
neighbors. Density of an object p, den(p), is defined as reverse of k-distance(p).
The reversed nearest neighborhood of p is defined by (7). The k-influential space
for p is defined by (8). Influential outlier score of an object p is defined by (9).

 R(p) = {qX|pN k(q)} (7)

IS k(p) = R(p) N k(p) (8)

(ܘ)௞ܱܮܨܰܫ = ଵ
ௗ௘௡(ܘ)

∑ ௗ௘௡(ܗ)ܗ∈಺ೄೖ(ܘ)

|ூௌೖ(ܘ)|
 (9)

The INFLO algorithm is also an extensively computational consuming algorithm
and inadequate to work with large datasets. Similar to the INFLO algorithm, the
rank-based outlier detection algorithm (RBDA) [8] uses the concept of the reverse
neighborhood to rank objects. Initially, rank of each object among its neighbors is
computed. Secondly, outlier degrees of objects are calculated. Outlier degree of p
is defined as ratio of sum of ranks of p among its neighbors with the number of its
neighbors. Next, outlier degree values of objects are normalized based on these
values and sizes of outliers are then detected. k objects having normalized outlier
degrees which are greater than L are considered as k outliers. ODMR and
ODMRD are two modified rank-based algorithms by assigning weights to clusters
[11]. The RBDA, ODMR and ODMRD algorithms resemble aforementioned
algorithm in terms of complexity, which are inappropriate to work with datasets
having a large number of objects.

Duong Van Hieu and Phayung Meesad 6

To provide a highly accurate result, a precise ranking method was proposed [10].
This is a multi-sampling method. At step i, (1iS), firstly, a subset having M
objects is arbitrarily extracted from a provided dataset. Then, outlier scores of
objects belonging to the subset are calculated. After finishing S steps, the final
outlier score of each object is computed as the total sum of its outlier scores from
S steps. Finally, objects are ranked based on the sum of outlier factor scores.
Objects with the highest scores are considered as outliers. It is reported that this
method can provide highly accurate results. However its execution time is
tremendously long when working with big datasets due to the size of subsets, the
number of subsets S can also be large numbers.

To resolve the weakness of using a single depth k of the previous algorithms and
make use of the reversed nearest relationships to offer higher accuracy, a ranking-
based outlier detection algorithm with various depths (RDOS) was proposed [11].
Unlike the LOF algorithm, the RDOS algorithm utilized both k-distance
neighborhood and reversed k-distance neighborhood with various values of k to
find the optimal k’. When obtaining an optimal value k’, outlier scores of objects
are calculated based on this k’, and objects are ranked in a descending order based
on scores. It was reported that the RDOS algorithm produces higher accuracy
compared to the LOF, COF, INFLO, RBDA, and ORMRD algorithms. However,
the main disadvantage of the RDOS algorithm is its execution time which is still
too long compared to the LOF, COF, INFLO, RBDA, and ORMRD algorithms.

3 A Fast Outlier Detection Algorithm for Big Datasets
This algorithm is proposed not only to utilize the strength of the RDOS algorithm
[11] but also to minimize its weakness. This proposed algorithm can produce
almost the same results compared to the RDOS algorithm and can reduce a large
part of the execution time when working with datasets having large numbers of
objects. The proposed fast cell-various depths ranking-based outlier detection
algorithm (Cell-RDOS) is comprised of three steps. The first step is to transform a
big dataset to a small set of weighted cells using a proposed cell-based algorithm.
The second step is to modify and apply the ranking-based algorithm with various
depths to the weighted cell set to calculate outlier degrees of cells. The last step is
to retrieve outliers’ ids from ranked cells and remove outliers from the provided
datasets. The overall solution of the proposed Cell-DROS is depicted in Fig.3.

7 Cell-RDOS: A Fast Outlier Detection Method

Fig.3: An illustration the proposed Cell-DROS solution.

3.1 A Proposed Cell-based Algorithm

This algorithm is designed to transform a dataset having a great number of objects
to a significantly small set of weighted cells based on predefined lower and upper
sizes of a desired set of weighted cells to reduce a large number of calculations.

Let X=(x1, x2, …, xN) be a provided dataset having N objects and D attributes,
vmin=(vmin 1, vmin 2, …, vmin D) and vmax=(vmax 1, vmax 2, …, vmax D) be the minimum
and maximum values of attributes. Each domain [vmin j, vmax j] is equally divided
into M intervals to establish vectors w=(w1, w2, …, wD) and mj=(mj1, mj2, …,
mjM) with j=1,…D. Values of vmin j, vmax j, wj, mjk are calculated by (11) to (14),
respectively.

܆ = ቌ
ଵଵݔ ଵଶݔ …
ଶଵݔ
. . .

ଶଶݔ
…

…
…

ேଵݔ ேଶݔ …
			
ଵ஽ݔ
ଶ஽ݔ
…
ே஽ݔ

ቍ (10)

 vmin j = min(xij) with i=1,…, N and j=1,…,D (11)

vmax j = max(xij) with i=1,…, N and j=1,…,D (12)

Begin

Read a dataset X, predefined bounds
CL, CU, a number of outliers n, and a

number of neighbors k

Transform X to a set of weighted cells Y

Write to disk a dataset X’ after
removing n outliers

Calculate outlier scores of cells and rank cells
in a descending order based on outlier scores

Identify outlier objects from ranked cells and
eliminate outlier objects from the dataset X

End

Duong Van Hieu and Phayung Meesad 8

௝ݓ = ௩೘ೌೣೕି	௩೘೔೙ ೕ

ெ
 with j=1,…,D (13)

mjk =vmin j + j wj with j=1,…,D and k=0,…,M (14)

Let CL and CU be the minimum and maximum numbers of unempty cells of a
desired set of weighted cells, an initial value of M is calculated by (15).

 M =1+(CL+CU)1/D (15)

After obtaining an initial value of M, the provided dataset will be divided into a
set of cells as in Fig.4. And, objects are mapped into cells by using Algorithm 1.

Fig.4: An illustration of dividing a dataset having D =2 into a set of cells.

Algorithm 1: Mapping (X, mj with j=1,…,D)
Input: A dataset X, D marking vectors mj
Output: A copy of dataset X with new coordinates called X’
Begin
 X’X
 For each data object x’i X’ with i=1,…,N

For j from 1 to D
stop0
k0
While (stop<1) and (k<M)

If (x’ij  mjk)
x’ij mjk
stop1

Else

9 Cell-RDOS: A Fast Outlier Detection Method

kk+1
End if

End while
End for

 End for
End

Due to the fact that the number of unempty cells created by the initial value M
from (16) could be less than the lower bound CL or greater than the upper bound
CU. The current value of M needs to be adjusted to get more acceptable cell sets.
Let C be a number of cells created by the current value of M, U be a current
number of unempty cells among C cells, C be difference between predefined
lower bound and the current number of unempty cells calculated by (16), M be
difference between an expected value of M and the current value of M calculated
by (17). Values of M will be adjusted by (18) until obtaining an expected value of
M which satisfies (19) or (20).

 C = |U - CL | (16)

 M = 1+ C 1/D (17)

 M = ൜ M + ∆୑, if	U < C୐
M	 − 	∆୑, if	U > C୙

 (18)

a) M = M +M b) M = M - M

Fig.5: An illustration of adjusting values of M to increase, decease values of U.

Let M -, M + be values of M at the previous and the next iterations, the process of
finding a desired value of M will stop when values of U, M -, M + satisfy (19). The
left part of this equation means the number of unempty cells satisfies the
predefined bounds. On the other hand, the right part means the process reaches an
unstopping situation.

Duong Van Hieu and Phayung Meesad 10

 (CL  U  CU) or (M - = M +) (19)

In a specific case, the value of U is unchanged when values of M are changed a
number of times. The process of finding an expected value of M should stop even
though U <CL or U > CU. Let nmax be a predefined maximum number of iterations
the value of U is unchanged but values of M are changed, and nloop be a number of
times successive values of M are changed but the value of U is unchanged. The
process of finding a desired value of M will stop when values of nmax and nloop
satisfy (20).

 (nloop = nmax) (20)

Let Y=(y1, y2,…,yU) be a set of unempty weighted cells obtained from the provided
dataset, yi=(yi1, yi2, yiD, wi) be an unempty cell where yij is coordinates of cell yi,
and wi is weight of cell yi. Weight of a cell is defined as a number of objects
belonging to that cell, and wi is calculated by counting the number of objects
x’iX’ having the same coordinates. The proposed transformation step is depicted
by Algorithm 2.

Algorithm 2: Cell-based_Transformation (X, CL, CU)
Input: A dataset X, predefined lower and upper bound called CL, CU
Output: A set of unempty cells called Y
Begin

1. Calculate vectors vmin and vmax using (11) and (12), respectively.
2. Calculate an initial value of M using (15).
3. Calculate w and mj with j=1,…,D using (13) and (14), respectively.
4. Map data objects xi = (xi1, xi2, ..., xiD) with i=1,…,N to cells based on

the value of xi and the marking vectors mj with j=1,…,D using
Algorithm 1.

5. Calculate a number of unempty cells called U.
6. Check stopping conditions (19), (20)

- If (19) or (20) is satisfied, return a set of unempty cells Y and
stop.

- Otherwise, calculate C using (16) and M using (17), adjust M
using (18), and repeat from step 3.

End

3.2 A Revised Ranking-based Algorithm with Various Depths

To be able to identify outlier objects from weighted cells and eliminate outliers
from a provided dataset, cells must be calculated to discover the outlier degrees
and then ranked according to these degrees. The ranking-based outlier detection

11 Cell-RDOS: A Fast Outlier Detection Method

algorithm with various depths is modified and applied to this process. In this
revised algorithm:

w(p) is weight of cell p,

d(p, q) is distance from cell p to cell q,

k-distance(p) is distance from cell p to its kth nearest neighbor,

Nk (p) is a set of k nearest neighbors of cell p,

dk(p, q) is a set of distances from cell p to cells q Nk (p),

k(p) is forward density around cell p at k-distance(p),

Rk(q) is reverse ranking of cell p with respect to cells q  Nk (p),

R(q) is reverse density around cell q at k-distance(p),

, hoptimal and smooth are calculated using (21), (22) and (23), respectively [11].
The proposed algorithm is depicted as Algorithm 3.

ߪ = ௠௘ௗ௜௔௡(|ೃି௠௘ௗ௜௔௡(ೃ)|)
଴.଺଻ସହ

 (21)

 ℎ௢௣௧௜௠௔௟ = ଴.ଽఙ
ேఱ

 (22)

 ୗ୫୭୭୲୦ = ଵ
ே௛೚೛೟೔೘ೌ೗

∑
ୣ୶୮	൭ିభమቆ

ೃషೃ
೔

೓೚೛೟೔೘ೌ೗
ቇ
మ

൱

√ଶగ
௞
௜ୀଵ (23)

Algorithm 3: Weighted-Cell Ranking(Y, k)
Input: Unempty cells Y, an initial value k
Output: Ids of cells associated with outlier scores, and an optimal k ‘
Begin

1. Find sorted distances associated with cells from each cell to its k
nearest cells.

For each cell pY
Find k-distance(p)
 dk(p,q)  ascending sort(d(p, q)) with q Nk (p)
Nk (p)  ascending sort(Nk (p)) by d(p, q) with q Nk (p)

 End for
2. Find reverse ranks and reverse density of cells with various depths.

For each cell pY
For depth i from 2 to k

For each q Nk (p)
Ri (q)  reverse rank p by q

Duong Van Hieu and Phayung Meesad 12

End for
End for
’R(p)median(Ri(q)/di(p,q))

End for
3. Find median of reverse density.
’(p)median(’R(p))

4. Find optimal k’.

 ←
݉݁݀݅ܽ݊(|′ோ −݉݁݀݅ܽ݊(′ோ(ܙ))|)

0.6745
h୭୮୲୧୫ୟ୪ ← 0.9/Nହ
max  0
k optimal  0
For depth i from 2 to k

ݐ݋݋݉ݏ௛ ←
1

ܰ	ℎ2√݈ܽ݉݅ݐ݌݋
෍݁

−1
2൭

൫′ܴ−′ܴ(ܙ)൯2

೓݈ܽ݉݅ݐ݌݋
൱

ܰ

݅=1

If smooth > max then
max smooth

k optimal  i
End if

End for
5. Calculate outlier score for each cell.

For each cell p  Y
 For depth i from 2 to k

 i(p)i/di(p,q)
(ܘ)݅݁ݎ݋ܿݏ ← ܴ݅−݅

݅(ܘ)	(ܘ)ݓ

 End for
 Score(p) median(score i(p))

End for
6. Sort cells in a descending order of scores

Ydescending sort(Y) by score (p) with pY
Return Y and koptimal

End

The original outlier degree calculation equation with various depths is modified in
such a way that a cell containing fewer objects has larger outlier degree compared
to a cell containing more objects. Thus, real outliers are likely to be detected
correctly.

It means that a cell
containing fewer objects has
larger outlier degree
compared to a cell
containing more objects

13 Cell-RDOS: A Fast Outlier Detection Method

Outputs of Algorithm 3 are weighted cells which are ranked in a descending order
based on the outlier degree values. Cells containing more objects are likely to be
ranked at lower positions because they have small values of outlier degrees. In
other words, real outlier data objects are likely to be contained in the top ranked
cells which contain fewer objects compared to the lower ranked cells.

Fig.6: An example of outputs of Algorithm 3.

3.3 Outlier Identification and Elimination

By applying Algorithm 3, n expected outliers are more likely to be enclosed in the
top m ranked cells (mn). The purpose of this step is to identify ids of outliers
contained in top ranked cells and eliminate n outlier data objects from the
provided datasets. Let Z=(z1, z2, …, zn) be a list of n outliers, Y is an output of the
previous step. The process of retrieving ids of outlier data objects from ranked
cells and eliminate outliers from the provided dataset is depicted as Algorithm 4.

Algorithm 4: Outlier Retrieving And Elimination(X, n, Y)
Input: A dataset X, a number of outliers n, a set of ranked cells Y.
Output: A set of data object as outliers Z, dataset X after removing outliers

݀݊ݑ݋݂ ← 0; 	݆ ← 1; ܈	 ← ∅

܈	܈ + {ܠ}
܆ ← ܆ − {ܠ}
݀݊ݑ݋݂	݀݊ݑ݋݂ + 1

݆݆ + 1

Begin

while ((݂݀݊ݑ݋ < ݊)	and	(݆ ≤ ݊))
For each object ܠ	܆ and ܠ ∈ ௝ܡ

End for

End while
Return ܈ and ܆

End

O
utlier degree

…

…

Duong Van Hieu and Phayung Meesad 14

Fig.7: An Illustration of retriving ids of outliers from ranked cells and eliminating
outliers from a provided dataset.

4 Experiments and Results
To compare results from the proposed Cell-RDOS algorithm with results from the
previous RDOS method [11] in terms of matching detected outliers and execution
time, algorithms were implemented using the C programming language, compiled
by the TDM-GCC 4.8.1 64 bit release associated with the Dev C++ 5.9.2, running
on a normal personal computer. The machine was configured with an Intel
processor core i5-24000 CPU 3.10 GHz, 8GB of RAM, and Windows 7. A
predefined k=10 was used as the number of nearest neighbors by both Cell-DROS
and DROS algorithms. A predefined nmax=10 was used as a predefined maximum
number of iterations the value of U is unchanged but values of M are changed.
And, 29 pairs <CL, CU = CL+1,000> with CL=i  1,000 and i=1,…,29 were tested
by the proposed Cell-RDOS algorithm.
Datasets used in the experiments were collected from previous researches. They
were a part of the Activity Recognition dataset and a part of the Person Activity
dataset obtained from UCI website [13], a part of the TDriveTrajectory dataset
obtained from the Microsoft website [14], the 2010_09_10_jam_+40 dataset
obtained from the NASA website [15], and the Simulation2D1 dataset obtained
from [16] with 100 outliers added. Information of the selected datasets is shown in
Table 2.

…

…

Retrieve ids of outliers
Output outliers

Output a dataset
after removing
outliers

15 Cell-RDOS: A Fast Outlier Detection Method

Table 2: Information of datasets.

Datasets No. of
objects

No. of
attributes

No. Outliers need to be
detected

Activity Recognition 162,501 3 10
Person Activity 164,860 3 10
TDrive Trajectory 176,424 2 7
2010_09_10_jam_+40 584760 6 10
Simulation2D1 800,059 2 100

Criteria used to compare the proposed Cell-DROS and the previous DROS
algorithm are numbers of matching detected objects and the average of execution
time.

Table 3: Comparison of matching results between two algorithms with CL=29,000.

Datasets No. of
objects

No. of detected
outliers

No. of matching
detected objects

Percentage
of matching

Activity Recognition 162,501 10 9 90%
Person Activity 164,860 10 9 90%
TDrive Trajectory 176,424 7 6 85%
2010_09_10_jam_+40 584,760 10 10 100%
Simulation2D1 800,059 100 100 100%

Table 4: Comparison of executing time between two algorithms with CL=29,000

Datasets No. of
objects

Executing time (in minutes) Reduced
time RDOS Cell-RDOS

Activity Recognition 162,501 509.99 8.33 98.37%
Person Activity 164,860 533.93 4.46 99.16%
TDrive Trajectory 176,424 611.85 398.55 34.86%
2010_09_10_jam_+40 584,760 12,086.84 8.85 99.93%
Simulation2D1 800,059 9,807.62 12.05 99.88%

When working with datasets having fewer than 200,000 objects, results from
Table 3 shows that unmatched detected outliers between the proposed Cell-DROS
solution and the previous RDOS algorithm are only 1 object among the number of
needed outliers. However, results in Table 4 shows that the proposed Cell-RDOS
algorithm can reduce the execution time from 34.86% to 99.16% compared with
the RDOS algorithm. Among three datasets having fewer than 200,000 objects,
the execution time of the dataset TDrive Trajectory is only reduced by 34.86%
because this dataset had low density patterns.

When working with bigger datasets having 584,760 and 800,059 objects, results
in Table 3 shows that the proposed Cell-RDOS algorithm produces exactly the
same detected outliers when compared to the results of the RDOS algorithm.
However, results in Table 4 shows that the proposed Cell-RDOS algorithm can
reduce up to 99.88% of the execution time compared to the RDOS algorithm.

Duong Van Hieu and Phayung Meesad 16

In the case of the dataset 2010_09_10_jam_+40, the previous DROS algorithm
consumed 12,086.84 minutes, approximately equal to 8.39 days, to detect and
remove 10 outliers from the provided dataset. However, the proposed Cell-DROS
algorithm produced exactly the same results within only 8.85 minutes.
In the case of the dataset Simulation2D1, the previous RDOS algorithm consumed
9,807.62 minutes. Whereas, the proposed Cell-RDOS algorithm consumes only
12.05 minutes to detect the same outliers. This reduced time is approximately
equal to 163.27 hours or 6.8 days.
Moreover, based on the selected datasets, experiment results also show that the
proposed Cell-RDOS algorithm produced the same results when the lower bound
CL was assigned 27,000 cells, 28,000 cells, and 29,000 cells. And, numbers of
matching detected outliers would become smaller when CL obtains smaller values.

5 Conclusions and Discussions
The ranking-based outlier detection with the various depths algorithm (RDOS) is
better than many other ranking-outlier detection algorithms in terms of outlier
recognition including LOF, COF, INFLO, RBDA, and ORMRD algorithms.
However, it is not appropriate to work with very large datasets due to its
shockingly long execution time. This paper proposes a Cell-RDOS algorithm for
outlier detection in big datasets. The proposed solution can utilize the merit of the
RDOS algorithm and resolve its weakness which is long executing time.

Experiment results show that the proposed Cell-DROS algorithm satisfies the
design goals. It produces the same results compared to the RDOS algorithm and
minimizes a large part of the RDOS algorithm’s execution time when analyzing
large datasets.

The proposed Cell-RDOS algorithm can be considered as a great tool for ranking-
based outlier detection for big datasets. Accuracy level of the proposed Cell-
RDOS algorithm matches the accuracy level of the RDOS algorithm. However,
the Cell-RDOS method can reduce up to 99% of execution time compared to the
RDOS method when working with very large datasets such as
2010_09_10_jam_+40, Simulation2D1. Based on the experiment results from the
collected datasets, to gain a high accuracy level, the predefined lower bound
should be at least 27,000 cells.

References
[1] Chandola, V., Banerjee, A. and Kumar, V. 2009. Anomaly detection: A

survey, ACM Computing Surveys, vol.41, no.15, 1-15.
[2] Hawkins, D. M. 1980. Introduction, in Identification of Outliers, Chapman &

Hall, 1-9.

17 Cell-RDOS: A Fast Outlier Detection Method

[3] Aggarwal, C. C. 2015. Outlier Analysis, in Data Mining, Springer
International Publishing Switzerland, 237-263.

[4] Shaikh, S. and Kitagawa, H. 2014. Top-k Outlier Detection from Uncertain
Data, International Journal of Automation and Computing, vol.11, 128-142.

[5] Breunig, M.M., Kriegel, H.P., Raymond, T.Ng, and Sander, J. 2000. LOF:
identifying density-based local outliers, ACM SIGMOD Record, vol.29, 93-
104.

[6] Tang, J., Chen, Z., Fu, A.W.C. and Cheung, D.W.L. 2002. Enhancing
Effectiveness of Outlier Detections for Low Density Patterns, in the 6th
Pacific-Asia Conf. on Advances in Knowledge Discovery and Data Mining,
535-548.

[7] Jin, W., Tung, A.H., Han, J. and Wang, W. 2006. Ranking Outliers Using
Symmetric Neighborhood Relationship, Advances in Knowledge Discovery
and Data Mining, vol.3918, 577-593.

[8] Huang, H., Mehrotraa, K. and Mohana, C.K. 2013. Rank-based outlier
detection, Journal of Statistical Computation and Simulation, vol.83, 518-531.

[9] Huang, H., Mehrotra, K. and Mohan, C. 2012. Algorithms for Detecting
Outliers via Clustering and Ranks, Advanced Research in Applied Artificial
Intelligence, vol.7345, 20-29.

[10]Ha, J., Seok, S. and Lee, J.S. 2015. A precise ranking method for outlier
detection, Information Sciences, vol.324, 88-107.

[11]Bhattacharya, G., Ghosh, K. and Chowdhury, A.S. 2015. Outlier detection
using neighborhood rank difference, Pattern Recognition Letters, vol.60, 24-
31.

[12]Hodge, V.J. 2014. Outlier Detection in Big Data, in Encyclopedia of Business
Analytics and Optimization, vol.5, 1762-1771.

[13]Lichman, M. Machine Learning Repository, http://archive.ics.uci.edu/ml/.

[14]Yuan, J., Zheng, Y., Xie, X. and Sun, G. 2011. Driving with knowledge from
the physical world, in the 17th ACM SIGKDD international conference on
Knowledge discovery and data mining, San Diego, California, USA, 316-324.

[15]Edward B. 2014. 2010_09_10_jam_+40 Lab.

 https://c3.nasa.gov/dashlink/resources/?type=28
[16]Hieu, D.V. and Meesad, P. 2015. A Cell-MST-Based Method for Big Dataset

Clustering on Limited Memory Computers, in the 7th International Conference on
Information Technology and Electrical Engineering, Chiang Mai, Thailand, 632-
637.

