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Abstract 

     Outlier detection is one of the obstacles of big dataset analysis 
because of its time consumption issues. This paper proposes a fast 
outlier detection method for big datasets, which is a combination of 
cell-based algorithms and a ranking-based algorithm with various 
depths. A cell-based algorithm is proposed to transform a very large 
dataset to a fairly small set of weighted cells based on predefined 
lower and upper bounds. A ranking-based algorithm with various 
depths is modified and applied on weighted cells to calculate outlier 
scores and sort cells based on their outlier scores. Finally, an outlier 
obtaining algorithm is proposed to identify ids of outliers from the 
ranked cells and eliminate outliers from the given datasets. 
Experiment results show that the proposed method can produce the 
same results when compared to the previous rank-difference outlier 
detection algorithm but it can reduce up to 99% of executing time. 

     Keywords: Cell-based outlier detection, Rank-based outlier detection, Outlier 
detection, Outlier detection in big datasets. 

1      Introduction 
Outlier analysis is an important process in the data science field because of its 
applicability to various sorts of different problems including military surveillance, 
fault detection in safety systems, security intrusion detection, and credit card fraud 
detection, etc. [1]. An outlier is defined as an observation which deviates highly 
from the remaining observations [2]. The outlier objects may be generated by 
different sources or mechanisms compared to the remaining objects in the same 
datasets.  Outlier objects or outliers are sometimes called abnormal, deviant, or 
discordant objects [3]. 
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Outlier detection algorithms normally find models of normal objects from 
provided datasets. Hence, outliers are objects which do not fit those normal 
models. Results of outlier detection algorithms are normally in one of two forms. 
The former is the binary labelling results; each object is assigned a label ‘normal’ 
or ‘outlier’. On the other hand, the later assigns a real value as outlier score to 
each object and sorts objects in a descending order based on the outlier scores. 
The top k  sorted objects are considered as k  outliers [4].  

 

Fig. 1:  An example of a dataset having 2 clusters and 2 outliers. 

The well-known outlier detection algorithms including density-based local outlier 
factor (LOF) [5], connectivity-based outlier factor (COF) [6], influential measure 
of outliers by symmetric neighborhood relationships (INFLO) [7], rank-based 
detection algorithms (RBDA) [8], and ranking combined with clustering 
algorithms (ODMR, ODMRD) [9] have limitations in terms of using density. The 
LOF and COF algorithms which uses k nearest neighbors may produce poor 
results when outliers are located between low and high density clusters, the 
INFLO algorithm may produce incorrect outliers because it uses an assumption 
that all neighbors of an object have the same density, results of the RBDA, 
ODMR, ODMRD algorithms could be negatively affected by local irregularities 
of datasets.  

Recently, to overcome the limitations of the aforementioned well-known outlier 
detection algorithms, a precise outlier detection method based on multi-time 
sampling [10] and a ranking-based outlier detection algorithm with various depths 
(RDOS) [11] have been proposed. It was reported that the newly proposed 
algorithms can produce very high precise results compared to the previous 
algorithms. However, these new algorithms cannot be applied to datasets having 
large numbers of objects due to very long execution time.  
High precise outlier detection algorithms are usually extensively computational. 
When datasets have a very large number of objects, detection of outlier objects in 
those datasets is a challenging problem [12]. This paper proposes a fast outlier 
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detection method which is a hybrid of cell-based algorithms and the ranking-
based outlier detection algorithm with various depths. This proposed algorithm 
(abbreviated to Cell-RDOS) should be an appropriate outlier detection method for 
datasets with a very large number of objects.  
Contributions of the proposed Cell-RDOS method are very significant to outlier 
analysis in the big data era. Firstly, a cell-based method is proposed to transform a 
very large dataset into a fairly small set of weighted cells based on the predefined 
lower and upper magnitudes. Secondly, a revised version of the ranking-based 
outlier detection algorithm with various depths will be applied to the sets of 
weighted cells to calculate outlier scores of cells and rank cells based on the 
outlier scores. Finally, an outlier obtaining algorithm is proposed to identify 
outlier objects from the ranked cells and remove outliers from the provided 
datasets. The proposed Cell-RDOS method can produce the same results as the 
RDOS algorithm but it can reduce up to 99% execution time of the RDOS 
algorithm. 

The rest of this paper is organized into four sections. Section 2 is related 
literatures. Section 3 explains the proposed Cell-DROS method. Section 4 covers 
experiments and results. Last but not least, conclusions and discussions are 
covered in Section 5.     

2      Related Work 
This paper focuses on the second form of outlier detection results. The outlier 
detection algorithms assign real values as outlier scores to objects and rank them 
in a descending order based on their outlier scores. The top k  ranked objects are 
considered as k  outliers. For instance, the object 122 in Table 1 should be 
considered as an outlier. 

Table 1: An example of sorted objects associated with outlier scores. 

Object IDs Outlier Scores 
122 1,429.75 
18 211.79 
207 120.34 
177 96.93 
192 82.82 
91 70.01 
… … 

The first algorithm belonging to this ranked-based strategy is to use local outlier 
factor (LOF) [5]. This density-based outlier ranking algorithm initially computes 
abnormal degrees of all objects based on the definitions of local reachability 
density and k-distance neighbors. Then, objects are ordered based on abnormal 
magnitudes. The top k objects with the highest abnormal magnitudes are 
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considered as top k outliers. Let p, o be objects, k be a positive integral number, X 
be a set of objects, and k-distance(p) or d(p, o) is a distance between p and o X 
such that: 

1. Having at least k  objects o’X\{p} satisfy d(p, o’)  d(p, o), 

2. And, having at most k-1 objects o’X\{p} satisfy d(p, o’) < d(p, o). 

k-distance neighbors of an object p are objects whose distances from p are not 
greater than k-distance(p) and denoted by (1). 

             N k-distance(p)={qX\{p}|d(p, q)  k-distance(p)}                        (1) 

Reachability of an object p with respect to an object o is defined by (2), local 
reachability density of an object p is defined by (3), and local outlier factor of an 
object p is defined by (4). 

           reach-distk(p, o)=max{k-distance(o), d(p, o)}                            (2) 

(ܘ)௞݀ݎ݈  = ଵ
∑ ೝ೐ೌ೎೓ష೏೔ೞ೟ೖ(ܗ,ܘ)ܗ∈ಿೖ(۾)

หಿೖ(ܘ)ห

                                        (3) 

(ܘ)௞ܨܱܮ                      =
∑ ೗ೝ೏ೖ(ܗ)

೗ೝ೏ೖ(ܘ)ܗ∈ಿೖ(ܘ)

|ேೖ(ܘ)|
                                             (4) 

 

 

  

 

 

 

Fig.2:  An illustration of k-distance (o) and reach-dist k (p,o).  

The LOF algorithm is extensively computational when working with datasets 
having large numbers of objects. To improve results of the LOF algorithm when 
working with low density patterns, connectivity-based outlier factor (COF) was 
proposed [6]. The COF of an object p is defined as ratio of its average chaining 
distance with average chaining distances of its k nearest neighbors. A distance 
between two disjoined-subsets P and Q of X is defined as the minimum distance 
between object xP and yQ. A set based nearest path, SBN-path, from p1 of 
length r  is a sequence <p1, p2,…, pr> in such a way that pi+1 is the nearest 
neighbor of the set {p1, p2,…, pi} with 1  i  r-1. A set based nearest trail, SBN-

p2 

o 

݇ −  (ܗ)݁ܿ݊ܽݐݏ݅݀

ℎܿܽ݁ݎ − (ܗ,ଶܘ)௞ݐݏ݅݀ =  p1 (ܗ,ଶܘ)݀

−ℎܿܽ݁ݎ ൯ܗ,1ܘ൫݇ݐݏ݅݀ = ݇ −  (ܗ)݁ܿ݊ܽݐݏ݅݀
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trail, with respect to the SBN-path <p1, p2, …, pr> is defined as an ordered 
collection of r-1 edges <e1, e2, …, er-1> with 1  i  r-1 and  ei=(oi, pi+1) where 
oi{p1, p2,…, pi}. The average chaining distance from an object p to Q\{p} is 
defined by (5) and the connectivity-based outlier factor of an object p with respect 
to its k neighbors is defined by (6). 

ac − dist୕(p) = ଵ
୰ିଵ

∑ ଶ(୰ି୧)
୰

dist(e୧)୰ିଵ
୧ୀଵ                                   (5) 

(ܘ)௞ܨܱܥ =
|ேೖ(ܘ)|௔௖ିௗ௜௦௧ಿೖ(ܘ)(ܘ)

∑ ௔௖ିௗ௜௦௧ಿೖ(ܗ)(ܗ)ܗ∈ಿೖ(ܘ)
                                      (6) 

Similar to using LOF, when connectivity-based outlier factor values of all objects 
are gained, objects are ordered in a descending order based on the magnitudes of 
connectivity-based outlier factor values. Objects having the highest connectivity-
based outlier factor are considered as outliers. Using COF might be better than 
using LOF in the case of provided datasets containing low density patterns. 
Nevertheless, using COF is more computational than using LOF. Thus, the COF 
and LOF algorithms are inappropriate to work with big datasets.  
To be able to achieve more accurate outliers in more complex situations, 
influential measure of outliers (INFLO) was proposed [7]. Unlike LOF and COF 
algorithms, INFLO algorithm uses reverse nearest relationships to measure outlier 
degrees of objects. Influential measure of an object p is defined as ratio of density 
in its neighborhood with average density of objects in its reverse nearest 
neighbors. Density of an object p, den(p), is defined as reverse of k-distance(p). 
The reversed nearest neighborhood of p is defined by (7). The k-influential space 
for p is defined by (8). Influential outlier score of an object p is defined by (9).    

                                    R(p) = {qX|pN k(q)}                                      (7) 

IS k(p) = R(p) N k(p)                                        (8)  

(ܘ)௞ܱܮܨܰܫ                                 = ଵ
ௗ௘௡(ܘ)

∑ ௗ௘௡(ܗ)ܗ∈಺ೄೖ(ܘ)

|ூௌೖ(ܘ)|
                            (9) 

The INFLO algorithm is also an extensively computational consuming algorithm 
and inadequate to work with large datasets. Similar to the INFLO algorithm, the 
rank-based outlier detection algorithm (RBDA) [8] uses the concept of the reverse 
neighborhood to rank objects. Initially, rank of each object among its neighbors is 
computed. Secondly, outlier degrees of objects are calculated. Outlier degree of p 
is defined as ratio of sum of ranks of p among its neighbors with the number of its 
neighbors. Next, outlier degree values of objects are normalized based on these 
values and sizes of outliers are then detected. k objects having normalized outlier 
degrees which are greater than L are considered as k outliers. ODMR and 
ODMRD are two modified rank-based algorithms by assigning weights to clusters 
[11]. The RBDA, ODMR and ODMRD algorithms resemble aforementioned 
algorithm in terms of complexity, which are inappropriate to work with datasets 
having a large number of objects.  
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To provide a highly accurate result, a precise ranking method was proposed [10]. 
This is a multi-sampling method. At step i, (1iS), firstly, a subset having M 
objects is arbitrarily extracted from a provided dataset. Then, outlier scores of 
objects belonging to the subset are calculated. After finishing S steps, the final 
outlier score of each object is computed as the total sum of its outlier scores from 
S steps. Finally, objects are ranked based on the sum of outlier factor scores. 
Objects with the highest scores are considered as outliers. It is reported that this 
method can provide highly accurate results. However its execution time is 
tremendously long when working with big datasets due to the size of subsets, the 
number of subsets S can also be large numbers.  

To resolve the weakness of using a single depth k of the previous algorithms and 
make use of the reversed nearest relationships to offer higher accuracy, a ranking-
based outlier detection algorithm with various depths (RDOS) was proposed [11]. 
Unlike the LOF algorithm, the RDOS algorithm utilized both k-distance 
neighborhood and reversed k-distance neighborhood with various values of k to 
find the optimal k’. When obtaining an optimal value k’, outlier scores of objects 
are calculated based on this k’, and objects are ranked in a descending order based 
on scores. It was reported that the RDOS algorithm produces higher accuracy 
compared to the LOF, COF, INFLO, RBDA, and ORMRD algorithms. However, 
the main disadvantage of the RDOS algorithm is its execution time which is still 
too long compared to the LOF, COF, INFLO, RBDA, and ORMRD algorithms. 

3      A Fast Outlier Detection Algorithm for Big Datasets 
This algorithm is proposed not only to utilize the strength of the RDOS algorithm 
[11] but also to minimize its weakness. This proposed algorithm can produce 
almost the same results compared to the RDOS algorithm and can reduce a large 
part of the execution time when working with datasets having large numbers of 
objects. The proposed fast cell-various depths ranking-based outlier detection 
algorithm (Cell-RDOS) is comprised of three steps. The first step is to transform a 
big dataset to a small set of weighted cells using a proposed cell-based algorithm. 
The second step is to modify and apply the ranking-based algorithm with various 
depths to the weighted cell set to calculate outlier degrees of cells. The last step is 
to retrieve outliers’ ids from ranked cells and remove outliers from the provided 
datasets. The overall solution of the proposed Cell-DROS is depicted in Fig.3. 
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Fig.3:  An illustration the proposed Cell-DROS solution.  

3.1      A Proposed Cell-based Algorithm  

This algorithm is designed to transform a dataset having a great number of objects 
to a significantly small set of weighted cells based on predefined lower and upper 
sizes of a desired set of weighted cells to reduce a large number of calculations.  

Let X=(x1, x2, …, xN) be a provided dataset having N objects and D attributes, 
vmin=(vmin 1, vmin 2, …, vmin D) and  vmax=(vmax 1, vmax 2, …, vmax D) be the minimum 
and maximum values of attributes. Each domain [vmin j, vmax j] is equally divided 
into M intervals to establish vectors w=(w1, w2, …, wD) and mj=(mj1, mj2, …, 
mjM) with j=1,…D. Values of vmin j, vmax j, wj, mjk are calculated by (11) to (14),  
respectively. 

܆                                          = ቌ
ଵଵݔ ଵଶݔ …
ଶଵݔ
. . .

ଶଶݔ
…

…
…

ேଵݔ ேଶݔ …
			
ଵ஽ݔ
ଶ஽ݔ
…
ே஽ݔ

ቍ                              (10) 

  vmin j  = min(xij) with i=1,…, N and j=1,…,D                         (11) 

vmax j  = max(xij) with i=1,…, N and j=1,…,D                        (12) 

Begin 

Read a dataset X, predefined bounds 
CL, CU, a number of outliers n, and a 

number of neighbors k    

Transform X to a set of weighted cells Y 

Write to disk a dataset X’ after 
removing n outliers  

Calculate outlier scores of cells and rank cells 
in a descending order based on outlier scores 

Identify outlier objects from ranked cells and 
eliminate outlier objects from the dataset X 

End 
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௝ݓ                                        = ௩೘ೌೣೕି	௩೘೔೙ ೕ

ெ
 with j=1,…,D                              (13) 

mjk =vmin j + j wj with  j=1,…,D and k=0,…,M            (14) 

Let CL and CU be the minimum and maximum numbers of unempty cells of a 
desired set of weighted cells, an initial value of M is calculated by (15).  

 M =1+(CL+CU)1/D                                           (15) 

After obtaining an initial value of M, the provided dataset will be divided into a 
set of cells as in Fig.4. And, objects are mapped into cells by using Algorithm 1.  

 

Fig.4: An illustration of dividing a dataset having D =2 into a set of cells. 

Algorithm 1: Mapping (X, mj with j=1,…,D)   
Input: A dataset X, D marking vectors mj 
Output: A copy of dataset X with new coordinates called X’ 
Begin 
    X’X 
    For each data object x’i X’  with i=1,…,N 

For j from 1 to D 
stop0 
k0 
While (stop<1) and (k<M) 

If (x’ij  mjk) 
x’ij mjk  
stop1 

Else 
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kk+1 
End if 

End while 
End for 

    End for 
End 

Due to the fact that the number of unempty cells created by the initial value M 
from (16) could be less than the lower bound CL or greater than the upper bound 
CU. The current value of M needs to be adjusted to get more acceptable cell sets. 
Let C be a number of cells created by the current value of M, U be a current 
number of unempty cells among C cells, C be difference between predefined 
lower bound and the current number of unempty cells calculated by (16), M be 
difference between an expected value of M and the current value of M calculated 
by (17). Values of M will be adjusted by (18) until obtaining an expected value of 
M which satisfies (19) or (20). 

                  C = |U - CL |                                                    (16) 

                      M = 1+ C 1/D                                         (17) 

                 M = ൜ M + ∆୑, if	U < C୐
M	 − 	∆୑, if	U > C୙

                         (18) 

       
a) M = M +M       b) M = M - M 

Fig.5: An illustration of adjusting values of M to increase, decease values of U. 

Let M -, M + be values of M at the previous and the next iterations, the process of 
finding a desired value of M will stop when values of U, M -, M + satisfy (19). The 
left part of this equation means the number of unempty cells satisfies the 
predefined bounds. On the other hand, the right part means the process reaches an 
unstopping situation. 
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 (CL   U  CU) or (M - = M +)                                   (19) 

In a specific case, the value of U is unchanged when values of M are changed a 
number of times. The process of finding an expected value of M should stop even 
though U <CL or U > CU. Let nmax be a predefined maximum number of iterations 
the value of U is unchanged but values of M are changed, and nloop be a number of 
times successive values of M are changed but the value of U is unchanged. The 
process of finding a desired value of M will stop when values of nmax and nloop  
satisfy (20). 

 (nloop = nmax)                                        (20) 

Let Y=(y1, y2,…,yU) be a set of unempty weighted cells obtained from the provided 
dataset, yi=(yi1, yi2, yiD, wi) be an unempty cell where yij is coordinates of cell yi, 
and wi is weight of cell yi. Weight of a cell is defined as a number of objects 
belonging to that cell, and wi is calculated by counting the number of objects 
x’iX’ having the same coordinates. The proposed transformation step is depicted 
by Algorithm 2. 

Algorithm 2: Cell-based_Transformation (X, CL, CU)   
Input: A dataset X, predefined lower and upper bound called CL, CU 
Output: A set of unempty cells called Y 
Begin 

1. Calculate vectors vmin and vmax using (11) and (12), respectively. 
2. Calculate an initial value of M using (15). 
3. Calculate w and mj with j=1,…,D using (13) and (14), respectively. 
4. Map data objects xi = (xi1, xi2, ..., xiD) with i=1,…,N  to cells based on 

the value of xi  and the marking vectors mj  with j=1,…,D using 
Algorithm 1. 

5. Calculate a number of unempty cells called U. 
6. Check stopping conditions (19), (20) 

- If (19) or (20) is satisfied, return a set of unempty cells Y and 
stop. 

- Otherwise, calculate C using (16) and M using (17), adjust M 
using (18), and repeat from step 3. 

End 

3.2      A Revised Ranking-based Algorithm with Various Depths 

To be able to identify outlier objects from weighted cells and eliminate outliers 
from a provided dataset, cells must be calculated to discover the outlier degrees 
and then ranked according to these degrees. The ranking-based outlier detection 
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algorithm with various depths is modified and applied to this process. In this 
revised algorithm: 

w(p) is weight of cell p, 

d(p, q) is distance from cell p to cell q, 

k-distance(p) is distance from cell p to its kth nearest neighbor, 

Nk (p) is a set of k nearest neighbors of cell p, 

dk(p, q) is a set of distances from cell p to cells q Nk (p), 

k(p) is forward density around cell p at k-distance(p), 

Rk(q) is reverse ranking of cell p with respect to cells q  Nk (p),  

R(q) is reverse density around cell q at k-distance(p), 

, hoptimal and smooth are calculated using (21), (22) and (23), respectively [11]. 
The proposed algorithm is depicted as Algorithm 3. 

ߪ  = ௠௘ௗ௜௔௡(|ೃି௠௘ௗ௜௔௡(ೃ)|)
଴.଺଻ସହ

                                       (21) 

   ℎ௢௣௧௜௠௔௟ = ଴.ଽఙ
ேఱ

                                                 (22) 

 ୗ୫୭୭୲୦ = ଵ
ே௛೚೛೟೔೘ೌ೗

∑
ୣ୶୮	൭ିభమቆ

ೃషೃ
೔

೓೚೛೟೔೘ೌ೗
ቇ
మ

൱

√ଶగ
௞
௜ୀଵ                          (23) 

Algorithm 3:  Weighted-Cell Ranking(Y, k)   
Input: Unempty cells Y, an initial value k 
Output: Ids of cells associated with outlier scores, and an optimal k ‘ 
Begin 

1. Find sorted distances associated with cells from each cell to its k 
nearest cells. 

For each cell pY 
Find  k-distance(p) 
 dk(p,q)  ascending sort(d(p, q) ) with q Nk (p) 
Nk (p)  ascending sort(Nk (p)) by d(p, q) with q Nk (p) 

 End for 
2. Find reverse ranks and reverse density of cells with various depths. 

For each cell pY 
For depth i from 2 to k 

For each q Nk (p) 
Ri (q)  reverse rank p by q  
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End for 
End for 
’R(p)median(Ri(q)/di(p,q))  

End for 
3. Find median of reverse density. 
’(p)median(’R(p))  

4. Find optimal k’. 

 ←
݉݁݀݅ܽ݊(|′ோ −݉݁݀݅ܽ݊(′ோ(ܙ))|)

0.6745  
h୭୮୲୧୫ୟ୪ ← 0.9/Nହ 
max  0 
k optimal  0 
For depth i  from 2 to k 

ݐ݋݋݉ݏ௛ ←
1

ܰ	ℎ2√݈ܽ݉݅ݐ݌݋
෍݁

−1
2൭

൫′ܴ−′ܴ(ܙ)൯2

೓݈ܽ݉݅ݐ݌݋
൱

ܰ

݅=1
 

If smooth > max  then  
max  smooth 

k optimal  i 
End if 

End for 
5. Calculate outlier score for each cell. 

For each cell p  Y 
   For depth i from 2 to k 

       i(p)i/di(p,q)     
(ܘ)݅݁ݎ݋ܿݏ        ← ܴ݅−݅

݅(ܘ)	(ܘ)ݓ 

   End for 
   Score(p) median(score i(p))  

End for 
6. Sort cells in a descending order of scores 

Ydescending sort(Y) by score (p) with pY 
Return Y and koptimal 

End 

The original outlier degree calculation equation with various depths is modified in 
such a way that a cell containing fewer objects has larger outlier degree compared 
to a cell containing more objects. Thus, real outliers are likely to be detected 
correctly.  

It means that a cell 
containing fewer objects has 
larger outlier degree 
compared to a cell 
containing more objects 
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Outputs of Algorithm 3 are weighted cells which are ranked in a descending order 
based on the outlier degree values. Cells containing more objects are likely to be 
ranked at lower positions because they have small values of outlier degrees. In 
other words, real outlier data objects are likely to be contained in the top ranked 
cells which contain fewer objects compared to the lower ranked cells.   

 
 

 
 

 
 

 
 

Fig.6: An example of outputs of Algorithm 3. 

3.3      Outlier Identification and Elimination 

By applying Algorithm 3, n expected outliers are more likely to be enclosed in the 
top m ranked cells (mn). The purpose of this step is to identify ids of outliers 
contained in top ranked cells and eliminate n outlier data objects from the 
provided datasets. Let Z=(z1, z2, …, zn) be a list of n outliers, Y is an output of the 
previous step. The process of retrieving ids of outlier data objects from ranked 
cells and eliminate outliers from the provided dataset is depicted as Algorithm 4. 

Algorithm 4: Outlier Retrieving And Elimination(X, n, Y)   
Input: A dataset X, a number of outliers n, a set of ranked cells Y. 
Output: A set of data object as outliers Z, dataset X after removing outliers 

݀݊ݑ݋݂ ← 0; 	݆ ← 1; ܈	 ← ∅ 

܈	܈ +  {ܠ}
܆ ← ܆ −  {ܠ}
݀݊ݑ݋݂	݀݊ݑ݋݂ + 1 

݆݆ + 1 

Begin 

while ((݂݀݊ݑ݋ < ݊)	and	(݆ ≤ ݊)) 
For each object ܠ	܆ and ܠ ∈ ௝ܡ  

End for 

End while 
Return ܈ and ܆ 

End 

O
utlier degree 

… 

… 
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Fig.7: An Illustration of retriving ids of outliers from ranked cells and eliminating 
outliers from a provided dataset. 

4      Experiments and Results 
To compare results from the proposed Cell-RDOS algorithm with results from the 
previous RDOS method [11] in terms of matching detected outliers and execution 
time, algorithms were implemented using the C programming language, compiled 
by the TDM-GCC 4.8.1 64 bit release associated with the Dev C++ 5.9.2, running 
on a normal personal computer. The machine was configured with an Intel 
processor core i5-24000 CPU 3.10 GHz, 8GB of RAM, and Windows 7. A 
predefined k=10 was used as the number of nearest neighbors by both Cell-DROS 
and DROS algorithms. A predefined nmax=10 was used as a predefined maximum 
number of iterations the value of U is unchanged but values of M are changed. 
And, 29 pairs <CL, CU = CL+1,000> with CL=i  1,000 and i=1,…,29 were tested 
by the proposed Cell-RDOS algorithm.  
Datasets used in the experiments were collected from previous researches. They 
were a part of the Activity Recognition dataset and a part of the Person Activity 
dataset obtained from UCI website [13], a part of the TDriveTrajectory dataset 
obtained from the Microsoft website [14], the 2010_09_10_jam_+40 dataset 
obtained from the NASA website [15], and the Simulation2D1 dataset obtained 
from [16] with 100 outliers added. Information of the selected datasets is shown in 
Table 2. 
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Table 2: Information of datasets. 

Datasets No. of 
objects 

No. of 
attributes 

No. Outliers need to be 
detected 

Activity Recognition 162,501 3 10 
Person Activity 164,860 3 10 
TDrive Trajectory 176,424 2 7 
2010_09_10_jam_+40 584760 6 10 
Simulation2D1 800,059 2 100 

Criteria used to compare the proposed Cell-DROS and the previous DROS 
algorithm are numbers of matching detected objects and the average of execution 
time. 

Table 3: Comparison of matching results between two algorithms with CL=29,000. 

Datasets No. of 
objects 

No. of detected 
outliers 

No. of matching 
detected objects 

Percentage 
of matching 

Activity Recognition 162,501 10 9 90% 
Person Activity 164,860 10 9 90% 
TDrive Trajectory 176,424 7 6 85% 
2010_09_10_jam_+40 584,760 10 10 100% 
Simulation2D1 800,059 100 100 100% 

 
Table 4: Comparison of executing time between two algorithms with CL=29,000 

Datasets No. of 
objects 

Executing time (in minutes) Reduced  
time RDOS Cell-RDOS 

Activity Recognition 162,501      509.99 8.33 98.37% 
Person Activity 164,860      533.93 4.46 99.16% 
TDrive Trajectory 176,424      611.85 398.55 34.86% 
2010_09_10_jam_+40 584,760 12,086.84 8.85 99.93% 
Simulation2D1 800,059 9,807.62 12.05 99.88% 

When working with datasets having fewer than 200,000 objects, results from 
Table 3 shows that unmatched detected outliers between the proposed Cell-DROS 
solution and the previous RDOS algorithm are only 1 object among the number of 
needed outliers. However, results in Table 4 shows that the proposed Cell-RDOS 
algorithm can reduce the execution time from 34.86% to 99.16% compared with 
the RDOS algorithm. Among three datasets having fewer than 200,000 objects, 
the execution time of the dataset TDrive Trajectory is only reduced by 34.86% 
because this dataset had low density patterns. 

When working with bigger datasets having 584,760 and 800,059 objects, results 
in Table 3 shows that the proposed Cell-RDOS algorithm produces exactly the 
same detected outliers when compared to the results of the RDOS algorithm. 
However, results in Table 4 shows that the proposed Cell-RDOS algorithm can 
reduce up to 99.88% of the execution time compared to the RDOS algorithm.  
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In the case of the dataset 2010_09_10_jam_+40, the previous DROS algorithm 
consumed 12,086.84 minutes, approximately equal to 8.39 days, to detect and 
remove 10 outliers from the provided dataset. However, the proposed Cell-DROS 
algorithm produced exactly the same results within only 8.85 minutes. 
In the case of the dataset Simulation2D1, the previous RDOS algorithm consumed 
9,807.62 minutes. Whereas, the proposed Cell-RDOS algorithm consumes only 
12.05 minutes to detect the same outliers. This reduced time is approximately 
equal to 163.27 hours or 6.8 days.  
Moreover, based on the selected datasets, experiment results also show that the 
proposed Cell-RDOS algorithm produced the same results when the lower bound 
CL was assigned 27,000 cells, 28,000 cells, and 29,000 cells. And, numbers of 
matching detected outliers would become smaller when CL obtains smaller values. 

5      Conclusions and Discussions 
The ranking-based outlier detection with the various depths algorithm (RDOS) is 
better than many other ranking-outlier detection algorithms in terms of outlier 
recognition including LOF, COF, INFLO, RBDA, and ORMRD algorithms. 
However, it is not appropriate to work with very large datasets due to its 
shockingly long execution time. This paper proposes a Cell-RDOS algorithm for 
outlier detection in big datasets. The proposed solution can utilize the merit of the 
RDOS algorithm and resolve its weakness which is long executing time. 

Experiment results show that the proposed Cell-DROS algorithm satisfies the 
design goals. It produces the same results compared to the RDOS algorithm and 
minimizes a large part of the RDOS algorithm’s execution time when analyzing 
large datasets. 

The proposed Cell-RDOS algorithm can be considered as a great tool for ranking-
based outlier detection for big datasets. Accuracy level of the proposed Cell-
RDOS algorithm matches the accuracy level of the RDOS algorithm. However, 
the Cell-RDOS method can reduce up to 99% of execution time compared to the 
RDOS method when working with very large datasets such as 
2010_09_10_jam_+40, Simulation2D1. Based on the experiment results from the 
collected datasets, to gain a high accuracy level, the predefined lower bound 
should be at least 27,000 cells. 

References 
[1] Chandola, V., Banerjee, A. and Kumar, V. 2009. Anomaly detection: A 

survey, ACM Computing Surveys, vol.41, no.15, 1-15. 
[2] Hawkins, D. M. 1980. Introduction, in Identification of Outliers, Chapman & 

Hall, 1-9.  



  
 
 
17                                                      Cell-RDOS: A Fast Outlier Detection Method 

[3] Aggarwal, C. C. 2015. Outlier Analysis, in Data Mining, Springer 
International Publishing Switzerland, 237-263. 

[4] Shaikh, S. and Kitagawa, H. 2014. Top-k Outlier Detection from Uncertain 
Data, International Journal of Automation and Computing, vol.11, 128-142. 

[5] Breunig, M.M., Kriegel, H.P., Raymond, T.Ng, and Sander, J. 2000. LOF: 
identifying density-based local outliers, ACM SIGMOD Record, vol.29, 93-
104. 

[6] Tang, J., Chen, Z., Fu, A.W.C. and Cheung, D.W.L. 2002. Enhancing 
Effectiveness of Outlier Detections for Low Density Patterns, in the 6th 
Pacific-Asia Conf. on Advances in Knowledge Discovery and Data Mining, 
535-548. 

[7] Jin, W., Tung, A.H.,  Han, J. and Wang, W. 2006. Ranking Outliers Using 
Symmetric Neighborhood Relationship, Advances in Knowledge Discovery 
and Data Mining, vol.3918, 577-593. 

[8] Huang, H., Mehrotraa, K. and Mohana, C.K. 2013. Rank-based outlier 
detection, Journal of Statistical Computation and Simulation, vol.83, 518-531. 

[9] Huang, H., Mehrotra, K. and Mohan, C. 2012. Algorithms for Detecting 
Outliers via Clustering and Ranks, Advanced Research in Applied Artificial 
Intelligence, vol.7345, 20-29.  

[10]Ha, J., Seok, S. and Lee, J.S. 2015. A precise ranking method for outlier 
detection, Information Sciences, vol.324, 88-107. 

[11]Bhattacharya, G., Ghosh, K. and Chowdhury, A.S. 2015. Outlier detection 
using neighborhood rank difference, Pattern Recognition Letters, vol.60, 24-
31. 

[12]Hodge, V.J. 2014. Outlier Detection in Big Data, in Encyclopedia of Business 
Analytics and Optimization, vol.5, 1762-1771.  

[13]Lichman, M. Machine Learning Repository, http://archive.ics.uci.edu/ml/.  

[14]Yuan, J., Zheng, Y., Xie, X. and Sun, G. 2011. Driving with knowledge from 
the physical world, in the 17th ACM SIGKDD international conference on 
Knowledge discovery and data mining, San Diego, California, USA, 316-324. 

[15]Edward B. 2014. 2010_09_10_jam_+40 Lab.  

       https://c3.nasa.gov/dashlink/resources/?type=28 
[16]Hieu, D.V. and Meesad, P. 2015. A Cell-MST-Based Method for Big Dataset 

Clustering on Limited Memory Computers, in the 7th International Conference on 
Information Technology and Electrical Engineering, Chiang Mai, Thailand, 632-
637. 


