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Abstract

Image intensity values which are extracted from magnetic
resonance imaging (MRI) are not standardised and do not have
tissue-specific interpretation due to the Ilimitation of MRI
instrumentation. The limitation poses many difficulties on data
visualisation and texture feature analysis. Intensity and texture
features extracted from MRI are not comparable for each inter-scan
and intra-scan. Hence, they are not appropriate to be applied in
supervised learning approaches to analyse the texture of white
matter lesions. Consequently, this drawback often requires a
standardisation method prior to further image analysis, which
remains a common problem. In this study, a new automated method
for image intensity standardisation is proposed to provide a standard
intensity scale. In the proposed method, the landmarks in the
intensity scale are automatically detected in the brain tissue intensity
distribution using an adaptive outlier detection approach.
Subsequently, landmarks are used to transform the brain tissues and
lesion intensity into a standard scale by using the proposed
transformation method. The method is validated using the cranial
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MRIs (FLAIR sequence) that contain the white matter lesions from
10 subjects during their 3-year follow-up study. A paired t-test: t(29)
= 2.045 and P(29)=1.42x10*> where P<0.0001 confirms the
significant difference in the before and after intensity range. In
addition, intensity and texture features between the output images
from the proposed approach and a leading intensity standardisation
algorithm are further compared using the coefficient of variation,
Pearson's correlation coefficient, and Kullback-Leibler divergence.
Finally, qualitative evaluation of the MRI intensity is presented
using the fixed-window-level method.

Keywords: Intensity normalisation, intensity standardization, MRI, outlier
detections, white matter lesions.

1 Introduction

Consequent to a revolution in diagnostic imaging modality, magnetic
resonance imaging has become an advanced intervention that offers a non-
invasive imaging technology enabling visualisation inside the human body
without the use of ionising radiation. The magnetic resonance (MR) modality
provides high contrast images to allow radiologists to identify abnormality by
visualising the soft-tissue intensity differences. Thus, MRI is widely used to
diagnose and study the progression of brain diseases that are caused by white
matter lesions (WML) such as multiple sclerosis (MS). However, quantitative
WML analysis based on a classification model is challenging since MRI does not
provide Hounsfield Units (HU) as offered in a computed tomography (CT) scan.
Moreover, results of the quantitative WML analysis are easily influenced by the
MRI acquisition conditions such as MR protocol, different brands of MRI
scanners, and MRI parameters. Consequently, image intensity standardisation is
an essential step to visualise the desired tissue uniformity and improve the tissue-
specific meaning. Furthermore, intensity standardisation can also enhance the
quality of brain lesion segmentation by using a supervised learning algorithm.
Thus, it may improve the accuracy of the results in quantification analysis [1].

2 Related Work

There are several intensity standardisation methods that have been reported in the
literature [1-8]. An automatic brightness and contrast adjustment approach has
been proposed by Wendt [9] to visualise MR images uniformly. The simplistic
standardisation approach using minimum and maximum pixel intensities for each
image is first determined. These values are then mapped onto grey scale linearly
in the 8-bit display. However, this method does not standardise the MR intensity
for tissue-specific meaning. Nyu and Udupa [2] extended the method to
standardise MRI intensity by using a windowing transformation approach. A set
of images was used as input to learn and define the parameters. Mode of the
histogram, minimum and maximum percentile intensities, and shoulder of the
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"background hump" were the parameters suggested by Nyu and Udupa [2]. The
parameters were used as landmarks to determine an intensity-standardised scale
histogram. The actual intensities from the original histogram that were generated
from input volumes were linearly transformed into the intensity standardised scale
histogram. Ge et al. [1] applied the intensity standardisation method with new
variant parameters such as median and percentiles that were introduced by Nyul et
al. [3] to determine the standard histogram. In their experiments, the characteristic
of healthy white matter tissue and abnormal tissue in Multiple Sclerosis (MS)
patients can be distinguished accurately. Furthermore, an intensity standardisation
method based on a multiplicative correction field was presented by Weisenfeld
and Warfteld [4]. The method transformed MR images to match standard scale
images with a minimising Kullback-Leibler divergence. Hence, the quality of MR
brain lesions segmentation by using the classification approach could be further
improved. To the best of our knowledge, the effectiveness of intensity
standardisation on pathological images has been discussed very rarely in the
literature. Most of the methods suggested above often did not include
abnormalities such as white matter lesions. Researchers tend to remove the lesions
on the brain images when evaluating the proposed intensity standardisation
algorithm. An interesting patch-based intensity standardisation had been
introduced by Roy et al. [8], whereby, a set of three-dimensional (3D) patches
were stacked into one-dimensional (1D) vectors. These best-matching vectors
between patch subject and patch atlas were determined by maximum likelihood
and an expectation-maximisation (EM) algorithm. An intensity-standardised
image was generated by replacing the centre of the pixel of each best-match
subject patch with the atlas patch.

In recent years, image intensity standardisation on brain lesion images has gained
more attention than healthy brain images. This is understandable since intensity
standardisation allows for many other supervised learning algorithms to be
applied to identify brain abnormalities such as white matter lesions and brain
tumours. Jager et al. [10] suggested a set of grey values to search and map
between a set of probability density functions (PDF) which were generated from
MR images and a set PDF generated from reference MR images. The mapping
between the joint PDF of both sets of images can be approximated by the
minimisation of the distance. Therefore, the benefit of this image intensity
standardisation method is independent of the application, region of interest,
acquisition protocol, and modality. In another work, MS lesion quantitative
analysis based on texture features that were computed based on MR intensity
pixels often suffered from inaccurate results due to non-standardisation. An
appropriate intensity standardisation method was proposed by Loizou et al. [5,11]
among six different intensity standardisation methods. These intensity
standardisation methods were evaluated based on a texture feature that was
extracted from the original and standardised images. Their evaluation method
included Wilcoxon rank sum test and Kullback-Leibler Divergence. Thus, the
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results of MS lesion classification were significantly improved after intensity
standardisation was applied and they were less dependent on the MR acquisition
protocol in their findings. In addition, a novel pathology robust intensity
standardisation algorithm was presented by Ekin [7]. In their study,
standardisation by global constraints (e.g., histogram similarity) and local
constraints (e.g., voxel intensity) that improved transformation functions between
the input and the reference were proposed. Subsequently, the final transfer
function was computed as a weighted combination of the two local and global
transfer functions. Thus, the method was successfully applied on pathology MR
images.

A thorough review of image intensity standardisation applied to MRI with MS
lesion load was first reported by Shah et al. [6]. They are investigating the effect
of standardisation approaches when the methods are applied on MR brain lesions.
Parametric supervised classifications such as a standard Bayesian classifier, an
outlier-detection based approach, and a Bayesian classifier with Markov Random
Field (MRF) were used to classify brain tissue and MS lesions before and after an
intensity standardisation process. In their comprehensive evaluation, they
concluded that image intensity standardisation was a significant step towards
providing an improved discriminating ability for supervised learning algorithms.

From the existing literature, it is found that the lack of intensity standardisation on
MRI still leads to the re-training of many supervised learning algorithms for every
new protocol setting on MRI. Obviously, this is a tedious and time-consuming
process for clinicians to repeat the algorithm training process every time. Hence,
many of discussed supervised learning algorithms are not appropriate give
efficient solution to the intensity standardisation issues on MRI. Besides, the lack
of intensity standardisation also caused a difficulty for neuro-radiologist in
performing a comparable brain lesion assessment study because the intensity
contrast of a lesions are vary from time to time when imaging acquired. Therefore,
in this study, an improved intensity standardisation method is introduced based on
enhanced landmark-based approach with automated outlier detection method. The
landmark-based approach has been used in many previous studies [17-20] and its
performance and accuracy were evaluated by Bergeest and Jager [21]. In addition,
Shah et al. [6] had thoroughly validated its exceptional performances on MRI
images to detect MS brain lesions which contributed by its fast computation and
ability to reduce the complexity. The integration of the landmark-based approach
and automated outlier detection method are able to standardise the brain tissue as
well as lesion on MR images. Unlike the existing approaches that had been
discussed, only brain tissue is normalised but not the lesion on MR images. In
term of WML visual assessment [22-24], the proposed method aims to standardise
image intensity contrasts for a comparable brain lesion assessments. This paper
consists of Section 3, description of details of MR images and the proposed
method used in the study; Section 4, presentation of results and the evaluation
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methods; and finally, in Sections 5 and 6, discussion of the findings and
conclusion respectively.

3  Materials and Methods

The proposed new image intensity standardisation method is validated using the
dataset MRI sequences obtained from the clinical study of the protective effects of
palm vitamin E tocotrienols on brain white matter [13]. Pathological cranial MR
images with 10 subjects comprising T1-weighted (T1-W) and Fast Fluid
Attenuated Inversion Recovery (FLAIR) sequences were randomly selected. All
subjects were part of at 3-year follow-up study that was acquired by different
parameters in each follow-up year. Therefore, a total of 30 case studies (628
images) were used in this validation of intensity standardisation. In addition, the
dataset included the cranial MR images from six healthy subjects that were
acquired by different parameters used to construct an image intensity standard
scale model; these healthy subjects were between 38 and 55 years of age (mean
age 45.00 £ 5.83 yr.). The subjects who were being used for intensity
standardisation were between 40 and 62 years of age (mean age 48.90 + 6.98 yr.).
The subjects were scanned with an acquisition matrix of 512 x 512 for axial
FLAIR and axial T1-weighted sequences. Both sequences had a slice thickness of
5.0 mm; all MR brain imaging were obtained from a 1.5T Signa HDx GE Scanner.
Details of MRI protocol and parameters are given in clinical study of the
protective effects of palm vitamin E tocotrienols on brain white matter [13]. The
evaluation and experiment were performed on a computer with Intel Core i5-
2450M CPU 2.50Ghz and 8.0 Gb installed memory (RAM) on 64-bit windows 7
operating system.

3.1 Manual Delineation and Features of White Matter Lesions

White matter lesions were delineated manually based on original image slices by
an experience neuro-radiologist. The lesions annotation created manually was
done by using the MIPAV ! (Medical Image Processing, Analysis, and
Visualization) software package. All lesion annotations converted into the binary
mask in patches to extract the voxel intensities before and after the standardisation
approaches. Grey-level co-occurrence matrix (GLCM) was constructed defined as
second-order statistical texture features. Haralick features such as contrast,
homogeneity, energy, and correlation are employed to describe the relationship
between the grey level intensity in GLCM.

3.2 Preprocessing

Brain tissue intensity standardisation is a crucial step in brain lesion analysis
especially when dealing with a supervised segmentation approach. Prior to

L http://mipav.cit.nih.gov/
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intensity standardisation, skull stripping [14] and inhomogeneity N3 correction
[15] are essential preprocessing steps in the proposed method. In this study,
inhomogeneity N3 correction proposed by Sied et al. [15] is first performed on
T1-W and FLAIR sequence images. This approach is mainly to eliminate the MRI
artefact, which is caused by the receiver coil sensitivity variation. It is a necessary
step that must be performed prior to the standardisation process according to the
thorough evaluation by Madabhushi and Udupa [16]. Subsequently, the model-
based level set method introduced by Zhuang et al. [14] was used to the perform
skull stripping process, because T1-W is the best MRI sequence to show the
structure of brain tissues. and thus, the preferred sequence for skull stripping. The
skull-stripped T1-W sequence was used as a mask to extract the brain in the
corresponding FLAIR sequence. Co-registration does not apply because the T1-W
and FLAIR sequence images for each patient used in this study were well aligned
because they are acquired at the same time during the acquisition process.
Furthermore, a small degree of misaligned T1-W’s mask applied on the
corresponding FLAIR image does not have an impact on the proposed method.
The reason for this is that, cerebrospinal-fluid (CSF) in the subarachnoid space in
brain tissue is not used further in our processing; a small degree of mis-alignment
would cut-off a few voxel of CSF only. Brain tissues such as grey matter and
white matter do not affect this case.

3.3 The Proposed MR Intensity Standardisation

The proposed MR intensity standardisation method is flexible and can be
customised into various regions of interest including brain and lesion images. The
outlier detection method was used to automatically identify the landmarks of
normal brain tissue voxel distribution. FLAIR images with skull stripping were
used to construct a histogram and perform a smoothing operation with using 1D
Gaussian kernel. An initial point is set at the full width at half maximum(FWHM)
to perform a gradient descent process. Local minimum points P¢ and Pcr as shown
in Fig. 1 were determined and used to compute the outliers Pii and P2;,
respectively. In order to compute these outliers, a box-whisker plot was performed.
The outlier, f3 is defined in as Eq. (1)

f, = Q; +1.5x IQR (1)

where IQR is the inter-quartile range (see Eqg. (2)) that denotes the range of values
falling within the 25th percentile, Qi and 75th percentile, Qs of the voxel
distribution.

IQR =Q3-Q; ()
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Fig.1 A pair of landmark [P1i, P2i] constructed from a histogram based on the
outlier detection approach [12].

An overview of the proposed method is illustrated in Fig. 2. Generally, the
proposed method consists of two main steps. They are called the training step and
the transformation step [2]. Details of the standard intensity scale formation are
described in the following section.

Stage 1 : Pre-processing

Stage 2 : Brain Tissue

and landmark Detection Intensity Standardisation
_______________ I
Input Input a\
T1-Sequence FLAIR-Sequence = g |
Training |
s * ————— oo TRy Landmark P1iand Pai are detected [
1 [ In-homogenity N3 correction ]| to construct standard scale |
1 | 4
I ¥ [ [ e e——— e
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| | stripping - FLAIR-Sequence | Landmark P1iand P2i are detected I
1 B P 1 totransformintensity voxelsinto ||
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Landmark Detection
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Fig.2 An overview of the proposed MR Intensity standardisation

framework using landmark-based brain tissue analysis.
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Training step : A set of preprocessed healthy brain images vi = gi (X; ¥) € VrLar

where VrLar is the volume image of the FLAIR MR sequence and g is an
intensity function in two dimensions that assign an integer intensity value for each
vi are used as input. The outlier detection method [12] that is based on the gradient
descent approach is applied to automatically compute the landmarks (parameters)
Pii and P2 from the H; intensity histograms that were obtained from each vi
image. These landmarks are important keys in this study because they are used to
separate the voxels of Cerebrospinal fluid (CSF), voxels of normal brain tissues
(which include white matter (WM), and grey matter (GM)), and the voxels of
hyperintensity (regions with high intensity) that are potentially related to image
artefacts or white matter lesions.

A standard intensity scale [L1,L2] is constructed from landmarks Pii and P»; that
are obtained from the intensity histogram where the histogram is generated using
preprocessed healthy brain images as demonstrated in Fig. 1. The detected
parameters are first computed into a range of intensity of interest (101) which is
denoted as [H'1i, H'2i]. In this study, a range of [0, 4095] that is denoted as [G'1,
G'2] are selected as 10l to ensure the range is under a lossless condition as
reported by Nyu and Udupa [2]. A set of parameters P1'i and P2'i are computed
using Eq. (3) and Eq. (4), respectively.

H 'li_H I2i

Py=H"+(P; -G") GG, (3)
. : cyHy—H'y
P2i:H1i+(P2i_Gl)G?1fG§ “4)

In the final step of the training process, the mean of a set of landmark parameters
L1 and L2 is computed as shown in Eq. (5) and Eq. (6).

=3 2120 (5)
n

L2="2 2120, (6)
n

where n is total number of training image slice.

Transformation step: The core idea of the transformation step is to transform all
intensity voxels of each preprocessed brain image slice into a standard intensity
scale. In other words, it is the deformed histogram H; from each preprocessed
brain image slice that is matched to the standard histogram. All slices of

preprocessed brain images vi = gi (X; ¥) € Vriar. The landmark (parameters) Pi;
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and P2 for each histogram H; are detected and mapped onto L1 and L2 of the
standard intensity scale. Hence, every voxel is computed and transformed using
three piecewise linear functions. The first linear function is transformed from
[G'1i,P1i] to [H'1,L1]; the second linear function is transformed from [P1i,Pai] to
[L1,L2]; and the third linear function is transform from [P2;,G'2i] to [L2,H"i]. The
transformation process in linear mapping using the piecewise linear function can
be illustrated in Fig. 3.

Standard Scale

e B e e e

L2 o e e e e e e —

L= ————

Gray Matter +
White Matter White Matter LI sions

v Cerebrospinal
Hai Fluid

G'3i P1i P2i 6y Image Scale
Fig.3 Intensity standardisation scale constructed using a landmark-based brain
tissue analysis.

The proposed method is different from Nyu and Udupa [2] since the 0.02
percentile at the right-most part of the histogram is intended to be cut off. In this
study, all of the intensity values will be fully utilised since the right-most tail of
the histogram is important for white matter lesion detection and segmentation
analysis. Hence, the right-most point of the histogram will be first estimated based
on Eq. 7 instead of being limited to a 4095 intensity range. This is mainly
because, for many of the abnormal brain images detected by outlier method, the
right-most point will normally exceed the 4095 intensity range. In the proposed
transformation step, the intensity of each voxel will then be mapped and
transformed based on Eq. 8.

L1-L2
P, —P,

H', (X)=L2+(G',-P,) (7
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H'li—Ll
Ll+(X_P1i)G'__p_’Gli<X_P1|

il 1£

L1-L
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o 2i
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[

3.4 Validation Method

152

In the experiment, validation is done to depict the standardisation results obtained
from the proposed method, which are compared with the original intensity value
and existing standardisation methods named as histogram normalisation and
decile-based histogram standardisation proposed by Loizou et al. [5,11] and Nyul

et al. [3] respectively. The aim of the evaluation is to verify the following:

e The consistency of intensity level after the standardisation process by using
the proposed method and existing standard methods.

e Minimisation of the change in intensity distribution after employing the
proposed method and existing standardisation methods.

e Minimisation of the change in texture structure after employed proposed
method and existing standardisation methods.

Therefore, we selected the appropriate evaluation method for the above
verification. There are four types of evaluation methods in this study:
e Coefficient of variation (CV): Repeatability of intensity level;

o Kaullback-Leibler divergence: similarity measure of intensity distribution;

e Pearson’s correlation coefficient [26]: Change in texture structure;

e Fixed image contrast visualisation.
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4  Results

4.1 Quantitative Evaluation

In order to measure the difference before and after standardisation results using
the proposed method, a paired sample t-test was done. The significance test is
performed based on the intensity distribution of a total of 30 case studies, 628 MR
images for 10 subjects in this study. From the statistical analysis, the p-value is
1.42 x 107%, which is less than 0.0001 (conventional criteria). Therefore, the
evaluation shows that there is a significant difference between the intensity results
before and after standardisation process. The changes of intensity distribution for
each subject and each time point are shown significant before and after the
standardisation on the histogram in Fig. 4. Before the standardisation, the image
intensity ranges of the distribution are varying from one to another (row (a)).
After the proposed method is applied, the image intensity values of distribution in
each study were changed according to the standard scale (row (b)). Subsequently,
the proposed method was also compared with the decile-based standardisation
method [3] and histogram normalisation(HN) [27]. In our studies, MR images for
each of the 10 subjects with their 3-year follow-up studies were computed by
using these standardisation methods. The decile-based standardisation was widely
used in recent research because it was easy to customised into various anatomical
regions and fast computation could be achieved due to less computational
complexity. Lately, this method was thoroughly evaluated and used by Shah et al.
[6] to investigate the significance of image intensity standardisation on the study
of multiple sclerosis segmentation and classification of MRI.

In our evaluation, the proposed method is compared with the decile-based
standardisation method proposed by Nyul et al. [3] using software called
Computer Aided Visualization and Analysis Software System (CAVASS)?2.
Furthermore, the accuracy of white matter lesion segmentation and classification
would be significantly affected by the computation of texture features which were
mainly calculated from the intensity value of MR images. Therefore, the
minimum change in texture information during transformation intensity into a
standard scale was always critical. In recent literature, histogram normalisation
[27] was evaluated by Loizou et al. [11] and it was proven that texture features
were not affected after the standardisation process. Therefore, the histogram
normalisation was also used in our results evaluation and comparison.

2 http://www.mipg.upenn.edu/cavass/
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Fig.4 Image intensity distribution of each subject before (row (a)) and after (row
(b)) standardisation. The first, second and third column are the base-year, 1-year

and 2-year follow-up study.

The repeatability of the intensity scale was crucial to ensure the consistency of
image features in MR images processing. Hence, with a good consistency in the
intensity scale, the accuracy of the classification model in the white matter lesions
segmentation was improved. Base on this fact, the CV was calculated based on
intensity distribution for each of the 10 subjects during 3-year follow-up studies.
The CV comparison among FLAIR MR Images before the standardisation process,
the existing standardisation method, and our proposed method can be illustrated in
Fig. 5. From the CV comparison within methods, a huge variation is shown in
FLAIR MR Images before the standardisation process for each subject and their
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follow-up studies. On the other hand, image intensity generated from HN, decile-
based standardisation and proposed method showed a good consistency and trivial
variation after the standardization process. In addition, the mean and standard
deviation of CV for each method in percentages were calculated. Among the CV
comparison of methods, the proposed method showed a good consistency with the
smallest variation (1.25 + 0.89) among other method. The proposed method
showed the lowest CV measures with 1.25% in averaged over 30 studies as it was
efficient to maintain the consistency of all images as shown in Table 1. The
proposed method also showed small dispersion compared across 30 different
studies where the standard deviation of CV is 0.89%. In addition, HN showed
2.03% of CV averaged over 30 studies, which were considered slightly higher
than the proposed method. The decile-based standardization method shown is
91.59% lower than FLAIR MR Images before standardization process and 5.88%
higher compared to the proposed method.

The minimum change in image distribution during the transformation process is
essential to prevent inaccurate computation of intensity features and texture
features. The Kullback-Leibler(KL) divergence [25] is employed to evaluate the
distance in between the distribution of the standardised image and non-
standardised image. In our observation, HN show a KL divergence 3.13 x 107° +
2.85 x 10° which was good and similar to the image before standardisation as
shown in Table 2. It is the lowest value compared to the proposed method and
decile-based standardisation as shown in Fig. 6. Apparently, decile-based
standardisation received the highest value of KL divergence (1.04 £ 0.20), which
indicated that an image intensity distribution change occurs during the
transformation process. Our proposed method received a good similarity, which is
seven times better than the decile-based standardisation method.

150
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Fig.5 Coefficient of variation of all standardised FLAIR MR Images from each
subject with their 3-year follow-up study.
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Fig.6 Kullback-Leibler(KL) divergence of all standardised FLAIR MR Images
from each subject with their 3-year follow-up study.

Kullback Leibler divergence

Table 1: Average coefficient of variation, comparison before and after
intensity standardisation among histogram normalisation, decile-based
standardisation and the proposed method (mean =+ std).

FLAIR MR Image Type Coefficient of Variation
IBS 98.72+40.60
IAHN 3.28+1.80
IADS 7.13+2.42
IAPM 1.25+0.89

IBS : images before standardisation; IAHN: images after histogram
normalisation; IADS: images after decile-based standardisation; 1APM:
images after proposed method.

Table 2: Average Kullback-Leibler divergence, comparison of difference
in image distribution before and after the standardisation process, use of
histogram normalisation, decile-based standardisation and proposed
method (mean + std).

FLAIR MR Image Type Kullback-Leibler Divergence
IAHN 3.13x10°+2.85x%x107°
IADS 1.04 +0.20
IAPM 0.14 +0.08

IAHN: images after histogram normalisation; IADS: images after decile-
based standardisation; IAPM: images after proposed method.
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The accuracy of the classification model was highly associated with the image
features. Hence, it is important to ensure the image features extracted are
comparable before and after the standardisation process. In this evaluation, the
WML were delineated from six different case studies, which were randomly
selected from 3-year follow-up studies. A comparison correlation coefficient of
each texture's relationship to FLAIR MR images for each method before
standardisation is illustrated in Fig. 7. We report that the texture features of WML
extracted based on images after the process with our proposed method and HN
received the highest correlation compared to decile-based standardization.
Furthermore, mean and standard deviation of each feature extracted from WML
were also calculated and illustrated in Table. 3. The mean of four features
computed from the image before standardisation and image after the proposed
method and HN showed trivial difference. They are 0.003 (Contrast), 0.001
(Homogeneity), 0.000 (Energy), and 0.001 (Correlation). On the other hand, mean
of each feature extracted from decile-based standardisation showed a huge
difference compared to the image before standardisation. They are 2.014
(Contrast), 0.025 (Homogeneity), 0.064 (Energy) and 0.036 (Correlation). Based
on this fact, the results of Pearson's correlation as shown in Fig. 7 are further
confirmed.
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Fig.7 Pearson's correlation coefficient of four texture features of WML compared to
each standardisation method, where IAHN is images after histogram normalisation;
IADS is images after decile-based standardisation; IAPM is images after proposed
method; std: standard deviation
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Table 3: Average WML texture features delineated by experience radiologist
computed using a GLCM approach, comparison before and after intensity
standardisation among histogram normalisation, decile-based standardisation
and proposed method (mean + std).

FLAIR MR GLCM Texture features
Image Type Contrast Homogeneity Energy Correlation
IBS 0.722+0.355 0.832+ 0.052 0.281+0.127 0.892 +0.049

IAHN 0.719+0.352 0.831+ 0.052 0.281+0.127 0.893 +0.048
IADS 2.736 £1.609 0.857+ 0.053 0.345+0.11 0.856 +0.066
IAPM 0.719+0.352 0.831+ 0.052 0.281+0.127 0.893 +0.048

IAHN: images after histogram normalisation; IADS: images after decile-based
standardisation; IAPM: images after proposed method

4.2  Qualitative Evaluation

The quality of the MR image standardisation can be judged by using the naked
eye as suggested by Nyu and Udupa [2] and Nyul et al. [3]. Fig. 8 shows an
example of a 2D axial image slice from the different three-year follow-up studies
with fixed window level. Four axial images in the first row before standardisation
show different contrast at fixed window with a window level of 2602 and window
width of 3659, this is mainly because of inconsistency in the grey-level intensity
value. Apparently, the radiologist might need more time and effort to re-adjust the
window level in order to visualise lesions accurately for each subject for a
comparable lesions image assessment. This is worse especially when the image
showed black indicating that the intensity value is out of the fixed window level.
For example, in the first column with the first row as shown in Fig. 8. These axial
images in the first row were then performed with the proposed standardisation as
shown in the second row, decile-based histogram standardisation [3] is in the third
row and histogram normalisation [11] is shown in the fourth row. Direct visual
comparison at a fixed window level is obviously shows that our proposed method
can be archived with better repeatability performance. In this experiment, these
images were generated by using a decile-based standardisation histogram showing
poor quality where the huge change in image texture could be observed. On the
other hand, images after a HN process [11] show inconsistency among four axial
images. We further judged the quality of the processed image from each method
by generating these images as shown in Fig. 8 into intensity distribution. From Fig.
9b, it is seen that the intensity distribution that were processed by the proposed
method were well aligned at the centre of distribution. This indicated that these
distribution are well located at the standard scale. Apparently, the image before
the standardisation process had been shown at nonstandard scale can be noticed as
illustrated in Fig. 9a. It is noticed that with decile based standardisation, all
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intensities were mapping well into 10 different landmarks [3] as demonstrated in
Fig. 9c. However, these histogram plot do not form a normal distribution which
reveal the inconsistency of the texture of brain. Hence, we do believe this finding
might make a great impact on the structure of image content such as image texture.
Thus, this is well explained by the worst correlation of texture features before and
after the decile-based standardisation process. It is worthwhile to notice that the
image (K) processed with histogram normalisation was out of the standard scale
as reported in Fig. 9d. This is mainly because voxels of lesions have extreme
hyperintensity, which were developed in the image (K) as shown in Fig. 8.
Therefore, the right tail of the intensity distribution will shift entire distribution,
which indicates a subject with moderate or severe lesion volume can cause the
distribution to become non-standardised. On the other hand, this did not affected
the proposed method since it was adapted to extend the right tail accordingly.

Fig.8 Individual slices from four different studies acquired using FLAIR
sequence with variable lesion load. First row is the original FLAIR before the
standardisation process. Second, third, and fourth rows are images after
standardisation based on proposed method, deciles based histogram
standardisation [3] and histogram normalisation [11], respectively. All image
slices are adjusted at a fixed window with window level of 2602 and window
width of 3659.
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Fig.9 Intensity distribution generated from J, K, L, and M of individual image
slices in Fig. 8. where (a) show the image intensity distribution before the
standardisation process, (b) is image intensity distribution after the proposed
standardisation process. (c) is image intensity distribution after decile-based
standardisation process. (d) is image intensity distribution after histogram
normalisation process.
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5 Discussions

In this study, our aim is to standardise the image intensity scale of MRI for white
matter lesions analysis. From the analysis and results, the method is applied on
660 MRI slices that consist of 10 subjects in a 3-year follow-up study. Images
standardised using the proposed method have the relatively smallest value of
coefficient variation compared with histogram normalization and deciles based
histogram standardization, for each of the 30 studies as reported in Fig. 5. The
standardised image processed by using the proposed method demonstrate a trivial
variation for different subjects and different time points. This is shown that the
proposed standardisation method able to correct the scanner sensitivity variations
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and variations due to repeatability studies. Therefore, comparisons between MRI
dataset from different time point and different subject become meaningful.

Furthermore, Fig. 6 has shown that the distribution of MRI intensity for each
subject is similar to the distribution of intensity before standardisation using the
proposed method since the mean and standard deviation of KL divergence is 0.14
+ 0.08. This is indicates the method shows the change of intensity level without
influent the image data. The proposed method considers shows a good similarity
to the image before standardisation. Therefore, it is proved that the method is an
appropriate method for MR intensity standardisation on FLAIR sequence.

Texture features of WML delineated by experience radiologist computed using a
GLCM approach between the image before and after standardisation using the
proposed method, which shows a good correlation as illustrated in Fig. 7.
Moreover, it is noticed that mean and standard deviation of contrast, homogeneity,
energy and correlation extracted from the image after the proposed process were
relatively close to the image before standardisation process as demonstrated in
Table 3. These evaluations suggest that the proposed method is capable of a
standardized MRI intensity scale and minimises the change in image texture
during the transformation process. Hence, it is suitable as a key preprocessing step
for white matter lesions analysis.

The proposed method is found robust comparing to existing methods in literature.
The reason is our method is to include the landmarks L1 (Eq. 5) and L2 (Eq.6)
computation that using the intensity of specific brain tissues namely white matter
and grey matter on FLAIR sequence. The landmarks L1 (Eqg. 5) and L2 (Eq.6) are
essential to improve the consistency of the intensity scale from various studies
with different time points on FLAIR sequence in MRI. Unlike other method in
literature [1-3], the percentile or mode of intensity distribution was used as the
main landmark without considering the information of specific brain structure.
Furthermore, the exiting methods [1-3] is only suitable for small amount of lesion
load images with assumption these amount of lesion voxel is above the 99.8
percentile value. However, a study conducted to show that standardised MS lesion
image with decile-based histogram standardisation added advantage to increase
the MS lesion segmentation accuracy [6].

In Fig. 9d, the histogram has explained that the HN method is not proper to be
applied to FLAIR sequence but only appropriate to be implemented on T2-w
sequence images which have been described by [11]. It had been observed that an
image intensity distribution curve (curve K) is located away from the centre of
standard scale which is processed using HN [27] method. This had shown that the
method does not become robust to standardised image intensity on FLAIR

sequence images. On the contrary, in our proposed method has implemented the
retention of the information from the most-right tail of the image intensity
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distribution which is essential for WML analysis. Therefore, our proposed method
has been designed by the estimation of the right tail of the image intensity
distribution adaptively (refer Eq. 7). As a result, most the intensity pixels on
FLAIR images are taken into account in order to identify wider dynamic range on
lesion images.

The proposed method has a limitation where it only works for FLAIR sequences
of the skull stripped MR brain images. FLAIR sequence is chosen because it is the
promising sequence used by various automated segmentation methods to detect
and visualise white matter lesions in clinical practice. One of the advantages is
that the proposed method works without the need to adjust any parameters
manually. Landmarks parameters are detected automatically based on the specific
tissues during outlier detection as described. Furthermore, the method is proved to
be used for standardising the progression lesions dataset from the different time
point. Hence, the proposed method is an essential preprocessing method which
can be applied in an automatic procedure in white matter lesion analysis.

In addition, the proposed method also indirectly improves the work efficiency for
visual assessment [22-24] in clinical practice, since the method enables
radiologists to visualise the comparable lesions under one standard scale for each
subject and every time point studied, for example standardised image
demonstrated in Fig. 8.

6 Conclusion

Variations in acquisition protocols over time, especially in clinical follow-up
studies can lead to non-standardisation intensity in MRI. Meaningful results
which construct from these non-standardised images is not possible. Therefore,
image intensity standardisation method used to WML identification with a
supervised learning approach that relies heavily on intensity feature become
critical. In this work, a new adaptive landmark based on brain tissue-specific
standardisation method for FLAIR MR brain lesions images is presented. The
method is enhanced based on the standardisation method proposed by Nyu and
Udupa [2]. The main difference in our proposed method is that the landmarks
(parameters) of the standard scale are automatic identified based on brain tissue
information using outlier detection. The method, which is validated and evaluated
based on a total of 660 MR images that consist of 10 subjects with their 3-year
follow-up study are reported. The proposed methodology in this study was
designed to standardise the FLAIR images without user intervention effectively.
Furthermore, the proposed method does not involve a complex mathematical
computation; it is proven to be fast and robust in successfully standardising the
brain MR with WML images from the different subject and follow-up studies over
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the time. The proposed method demonstrates a superior approach and achieves
good results in comparison to existing intensity standardisation methods.

In our opinion, the proposed method can provide a better way to advance the
accuracy of classification models to identify WML. However, a WML
segmentation investigation is required to conduct in the near future to review the
performance of proposed method to improve accuracy of WML identification and
segmentation. Besides, the proposed method could also improve the visual
assessment [22-24] performance and automatic quantitative assessment of WML
progression for drug discovery and early diagnosis of WML treatments with a
comparable image intensity result.
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