
DOI: 10.15849/IJASCA.231130.08

Received 4 August 2023; Accepted 26 September 2023

Int. J. Advance Soft Compu. Appl, Vol. 15, No. 3, November 2023
Print ISSN: 2710-1274, Online ISSN: 2074-8523
Copyright © Al-Zaytoonah University of Jordan (ZUJ)

An Alternative Static Taint Analysis Framework
to Detect PHP Web Shell-Based Web Attacks

Khaled Suwais, Adnan A. Hnaif, and Sally Almanasra

Faculty of Computer Studies, Arab Open University, Saudi Arabia

e-mail: khaled.suwais@arabou.edu.sa
Faculty of Science and Information Technology, Al-Zaytoonah University of Jordan

e-mail: Adnan_hnaif@zuj.edu.jo
Faculty of Computer Studies, Arab Open University, Saudi Arabia

e-mail: s.almanasra@arabou.edu.sa

Abstract

Web shell attacks through malicious PHP scripts allow attackers to execute system
commands remotely and take control of web servers. Most existing PHP shell
detection methods rely on signature matching, which can be evaded by
obfuscation. This paper proposes an alternative static taint analysis framework to
detect PHP web shell attacks by modeling data flows from untrusted inputs to
sensitive sinks. The proposed web shell attacks detector takes PHP source code as
input and performs a staged analysis, including lexical analysis to tokenize the
code, syntactic analysis to generate a parse tree, semantic analysis to extract
variables and functions into a dependency control flow graph (D-CFG), dataflow
analysis to track taint through the D-CFG and identify flows from untrusted
sources like $_GET to sinks like shell commands, and evaluation to compare
identified flows to known malicious patterns and check for indications of a web
shell attack. Each stage builds on the previous one, and the whole process aims at
reliably detecting PHP web shell threats through static taint analysis of program
flows from origin to system execution. It conducts a hybrid analysis using lexical,
syntactic, and semantic analysis of the abstract syntax tree. Static taint analysis is
a program analysis technique used to identify how untrusted data propagated
through a codebase without executing the program. Also, static taint analysis helps
find security issues by modeling how untrusted inputs interact with critical
operations via a static code inspection rather than dynamic execution. Results on
a PHP web shells dataset showed that our framework could achieve 95% recall
and 90% precision, outperforming existing static and dynamic analysis methods.
The approach also had fewer false positives than signature-based methods. The
evaluation demonstrates the framework’s capabilities in precisely detecting web
shell attacks with high accuracy.

 Keywords: PHP, web application security, web shell, static analysis, taint analysis

1 Introduction
Web applications have become ubiquitous for providing online services and remote access
capabilities [1]. The LAMP (Linux, Apache, MySQL, PHP) technology stack has long
been a popular combination powering dynamic web applications and web services [2].
PHP remains one of the most widely used server-side scripting languages integrated into

KH. Suwais et al. 118

millions of websites and web-based applications [3]. Its interpreted nature, flexibility, vast
libraries, and community support make it ideal for rapid web development.
However, the widespread adoption and exposed nature of web applications have attracted
cybercriminals seeking to find and exploit vulnerabilities. Web apps provide an online
gateway that, if compromised, can potentially give attackers access to backend databases,
sensitive customer data, or command execution capabilities on the hosting infrastructure.
One common attack vector is through web shells [4].
Web shells refer to malicious scripts that allow adversaries to execute system commands
remotely and take control of web servers [5]. By uploading or injecting malicious code
disguised as web scripts, attackers can gain persistent backdoor access to compromised
machines [6]. Web shells provide an interactive interface or set of functions that enable
arbitrarily executing operating system commands, installing malware, manipulating
databases, spreading spam, or further lateral movement.
PHP has been a popular language for authoring malicious web shells and backdoors. Its
wide usage and dynamic scripting capabilities allow web shell code to blend in among
benign web scripts. PHP shells also give control of Linux web servers that typically host
LAMP applications. The interpretable nature of PHP further allows attackers to evade
detection through obfuscation techniques. Encoding, encryption, injections, and other
tricks make purely signature-based detection inadequate [7].
This paper argues that there is a need for a robust web shell detection framework that can
identify malicious scripts precisely while resisting common obfuscation attempts. We
address this gap through a novel static analysis approach based on precisely tracking taint
flows from untrusted inputs to sensitive system commands. Focusing on input-to-sink data
propagations symptomatic of web shell activity allows the system to identify malicious
scripts effectively, even when obfuscated or varied.
The remaining sections of the paper are as follows: Section 2 discusses the related works.
The main components of the proposed framework appear in Section 3. The efficiency of
the scheme is demonstrated in Section 4. Finally, Section 5 concludes the paper.

2 Related Work

2.1 Web Shell Detection
With the rise of Maritime Intelligent Transport Systems (MITSs), there has been a surge
in information security threats. MITSs are typically managed through web servers, which
are often hacked. Hackers exploit web shell attacks to dominate web servers in the marine
sector. Traditional detection based on pattern matching struggles against newer web shells.
The work in [8] presents the H-DLPMWD technique for identifying web shells in
ASP.NET industrial IoT applications. The approach merges pattern matching with CNN
deep learning. Initially, the YARA-based pattern matching (YBPM) algorithm is utilized
to enhance web shell datasets. Application files are then transformed into IL code and
depicted as OCI vectors. The CNN model uses these vectors for web shell prediction in
ASP.NET code. Subsequently, YBPM refines benign predictions, reducing false positives.
Comprehensive tests validate the method’s efficiency, achieving 98.49% accuracy,
99.09% F1 score, and a 1.75% false positive rate.
Hannousse et al. [9] introduced a deep learning model for multi-language web shell
detection. This model discerns web shells from benign files by analyzing source scripts.
Given a lack of standard datasets, the researchers curated a significant dataset for

119 An Alternative Static Taint Analysis …

validation. The model surpasses existing systems in PHP, JSP, ASP, and ASPX detection,
boasting a 98.27% accuracy. The authors claimed they found that PHP’s source-code-
based detection outperforms opcode-based models. Notably, near-duplicates in datasets
skew performance. The paper also underscores the need to address sophisticated coding
tactics like letter slicing and code splitting in web shells.
In [10], a JSP web shell detection model is introduced to utilize BERT for word vector
extraction from bytecode, demonstrating superior performance over conventional
word2vec. The model employs the XGBoost algorithm for classification. The model,
exhibiting a 99.14% accuracy, outshines previous models in precision, recall, and F1 score.
To process JSP files, the Tomcat Server transforms them into Java class files, which are
then converted to bytecode. This bytecode undergoes BERT-based word vector extraction,
and XGBoost classifies the results. Contrasted against traditional models, the approach
offers a fresh perspective. Future endeavors could explore this model’s adaptability across
languages and seek ways to semantically enrich bytecode interpretation, capitalizing on
BERT’s contextual prowess.
Liu et al. [11] introduce a web shell detection method harnessing bidirectional GRU and
an attention mechanism. By examining the interplay between word vector dimensions and
detection accuracy, they ascertain optimal vector dimensions and word counts. Rigorous
testing validates the method’s robustness, effectively pinpointing multi-language web
shells without intermediate code conversion. After preprocessing to discard redundant data
like annotations, samples are segmented into words. These words undergo vectorization
via the word2vec model before being fed into the predictive network. Experimentally, the
method outperforms its counterparts in metrics like accuracy, recall, and F1 score. It
adeptly identifies PHP, JSP, ASPX, and ASP web shells with detection accuracies of
99.36%, 99.23%, and 99.87%, respectively, and corresponding recall rates of 98.6%,
99.13%, and 99.56%.
The research of Ai et al. [12] unveils a Gini-coefficient-based feature selection algorithm
and a WS-LSMR-guided weighted voting technique. Empirical results confirm its prowess
in handling imbalanced web shell data, achieving remarkable recall and accuracy rates.
The outlined feature selection, model training, and prediction processes can also be tailored
for other scripting languages, expanding the method’s versatility. Gini coefficients then
guide 4-gram feature weight determination and subsequent feature selection. This results
in a vocabulary adept at spotting both encrypted and non-encrypted web shells. To enhance
detection adaptability and precision, the authors introduce WS-LSMR, an ensemble model
comprising Logistic Regression, Support Vector Machine (SVM), Multi-layer Perceptron,
and Random Forest (RF), which employs weighted voting for classification. Tests indicate
its superiority over conventional methods, boasting a recall of 99.14% and an accuracy of
94.28%.
A work in [13] proposed a hybrid analysis technique combining static code analysis to
identify vulnerability patterns with targeted, dynamic test case generation to confirm true
positives. These studies showcase more advanced methods in enhancing the accuracy,
precision, and flexibility of static, dynamic, and hybrid analyzers to identify various
injection flaws and data flow vulnerabilities in PHP web applications. However, further
work is needed to handle the challenges posed by opaque code constructs, advanced
obfuscation, and evolving attack methods.
Zhu et al. [14] presented a multiview feature fusion-based method tailored for PHP web
shells. It integrates lexical, syntactic, and abstract features, encapsulating web shell
semantics. The Fisher score then prioritizes features by relevance. An optimized SVM

KH. Suwais et al. 120

classifier differentiates web shells from legitimate scripts. Key strengths include
integrating diverse lexical, syntactic, and abstract features representing PHP web shells’
essence and a Fisher scoring system ranking feature significance. Achieving a
commendable 92.18% overall accuracy and a 95.26% web shell detection rate, the method
passes leading detection tools. However, scope exists for broadening method coverage and
enhancing feature engineering. Future pursuits include detecting varied web shell
languages (e.g., JSP, ASP, Python) and leveraging deep neural networks for automated
feature extraction.
Prioritizing network security in IoT, Yong et al. [15] employ foundational machine
learning models based on Lightweight Detection System (LWDS) and Heavyweight
Detection System (HWDS) to detect these web shells. Enhanced performance is achieved
using ensemble techniques like RF, Extremely Randomized Trees (ET), and Voting. The
researchers also delve into lightweight versus heavyweight IoT computing contexts. The
experiments validate the models’ efficacy against web shell intrusions. For lightweight IoT
scenarios, RF and ET prove optimal, while Voting excels in heavyweight contexts. Results
demonstrate the ensemble models’ superiority over conventional methods in IoT security.
While RF and ET cater to lightweight settings, the Voting method, despite its
computational demands, delivers a 99.57% recall and 98.32% F1 score. Though the focus
is on PHP script-based IoT servers, future endeavors will explore diverse web shell script
types.
The work proposed in [16] introduces a deep super learner for enhanced detection. The
proposed method combined dynamic and static characteristics for a rich feature set. A
genetic algorithm subsequently filters these features, optimizing accuracy and recall while
significantly trimming feature dimensions to curtail computational costs. The initial step
involves the deduplication of gathered data, ensuring result accuracy. A comprehensive
feature set is then constructed using both static and dynamic attributes. These features
undergo vectorization via the word2vec algorithm. To manage feature volume, a genetic
algorithm evaluates feature dimension validity. Finally, web shell detection is executed
using the deep super learner, yielding improvements in accuracy and recall.
Wang et al. [17] proposed novel regularized adversarial training to improve the robustness
of web shell detectors against evasion attacks. It added weighted sparsity and diversity
regularizers to harden the model. However, some studies have tried modeling web shell
behavior using grammars and control flows instead of signatures.

2.2 Taint Analysis
Static code analysis is pivotal for bolstering web application security. This method
identifies vulnerabilities in source code without executing the program. Among its
techniques, taint analysis stands out, focusing on untrusted data flows in sensitive
computations. Notably, such tools are scarce for Laravel-based applications despite their
popularity. The work in [18] investigates the potential of taint analysis for detecting
vulnerabilities in Laravel projects. A tool that employs AST and dictionary-based source
code modeling is designed as a foundation for taint analysis. The tool examines Laravel’s
route file to identify controller files, which are then parsed and analyzed. Trials revealed
the tool could identify 13 vulnerabilities across six Laravel projects, with one false negative
attributed to a subpar sanitizer. The study underscores the viability of the modeling
technique for facilitating taint analysis in Laravel. Future work should test this tool on
more applications and diverse vulnerabilities.

121 An Alternative Static Taint Analysis …

Mini-programs within mobile super apps, like WeChat, access private data through super
app APIs, risking unintentional or malicious data leaks. Monitoring these data flows is
paramount for both manual and automated checks. Existing taint analysis methods,
however, grapple with unique challenges such as cross-language and cross-page data
movements in mini-programs. Enter TAINTMINI [17], a framework utilizing a universal
data flow graph to track data within and between mini-programs. Testing TAINTMINI on
238,866 WeChat mini-programs revealed that 11.38% exhibited privacy-sensitive data
flows, and 455 potentially breached privacy through collusion. These findings,
acknowledged by the vendor, demonstrate TAINTMINI’s significance in pinpointing and
reducing mini-program privacy threats.
Modern PHP web applications, with their intricate multi-layered design, utilize extensive
object-oriented code, introducing challenges for static vulnerability analysis. This
complexity, characterized by encapsulation, inheritance, and polymorphism, hampers the
creation of a comprehensive call graph and makes traditional data flow analyses ineffective
for finding vulnerabilities. Addressing these challenges, Zhao et al. [19] enhanced the Code
Property Graph (CPG) and introduced an innovative vulnerability path construction
method rooted in variable access paths. This augments vulnerability detection efficiency.
The tool, VulPathsFinder, derived from Joern-PHP, demonstrates superior efficacy in
detecting vulnerabilities in framework applications compared to existing tools. Despite its
capabilities, the dynamic essence of today’s PHP apps means static analysis still has its
limits, and outputs from VulPathsFinder require manual validation.
Despite static taint analysis’s potential in web security, its practical use has been limited
due to high false positives and negatives. Krohmer et al. [20] propose refining taint
analyzers specifically for software marketplaces to enhance their precision and recall.
Testing this on a sample of 1,000 WordPress plugins revealed ten CVEs, including two
high-critical vulnerabilities, illustrating the method’s viability for large-scale vulnerability
detection. The approach involves a two-phase process: bolstering recall and then honing
precision. The promising preliminary findings, including uncovering previously
unidentified SQL injection vulnerabilities, suggest that when scaled, the method might
expose up to 500 such vulnerabilities in the WordPress plugin store, alongside potential
XSS and path traversal vulnerabilities. This offers a hopeful avenue for future research in
marketplace security.
The research by [21] introduces an approach to construct taint analysis frameworks for
scripts, bridging the gap between native binaries and diverse scripting languages. The
initial experiments revealed that semantic disparities in data types between binaries and
scripts led to under-tainting. The approach identifies these gaps and generates force
propagation rules to counter this, mitigating under-tainting issues. Root cause analysis
showed that data type disparities were the primary culprits behind under-tainting. The
method detects type conversion functions, discerns under-tainting inputs and outputs, and
creates rules to ensure accurate taint propagation. Two reverse engineering techniques
were proposed to pinpoint specific functions and variables in script engines. Experimental
outcomes confirm the approach’s capability to construct efficient script taint analysis
frameworks, offering valuable insights for malware analysis. However, future endeavors
may explore broader applicability.
Taint analysis tools like PHASAR incur runtime overhead. Research works have focused
on efficient static taint checking. WEBVACATION in [22] performs static taint tracking
for PHP apps using control flow and dataflow analysis. WEBVACATION utilizes the PHP
interpreter to track taints propagating dynamically from user inputs to sensitive sinks.

KH. Suwais et al. 122

Jurásek [22] builds a static model of PHP apps through data flow analysis on the control
flow graphs to precisely propagate taints. Marashdih et al. [23] represent programs as
chromosome vectors optimized using a genetic algorithm to detect XSS vulnerabilities
through simulated taint tracking. These studies showcase specialized techniques for
statically accelerating taint analysis.
Prior methods for detecting input validation vulnerabilities often overlooked feasible
program paths, leading to false positives and issues with sanitization function validation.
Marashdih et al.’s [24] enhanced static taint analysis scrutinizes source code for feasible
paths, tracking tainted inputs until their execution. A specialized algorithm improved static
analysis for PHP variable functions. When tested on the SARD datasets and PHP
applications, the method showed a 44% improvement in detecting XSS vulnerabilities over
WAP and 26% over RIPS. For SQL injection detection, it outperformed WAP by 10% and
RIPS by 19%. Moreover, the approach bested prior symbolic execution studies in
vulnerability detection. This research presented a combined static analyzer (FPD) and taint
analysis approach, ensuring compliance with OWASP’s vulnerability prevention
guidelines. However, the method is limited by its reliance on static code and existing
vulnerabilities, struggles with new threats, and does not fully support PHP’s object-
oriented features.
Web application vulnerability detection often struggles with pattern reliance in static
methods and low coverage in dynamic techniques. Addressing this, Zhao et al. [25]
introduced a PHP Remote Command/Code Execution (RCE) vulnerability-directed
fuzzing approach, blending static and dynamic methods. Through detailed static taint
analysis, potential RCE vulnerabilities are identified. The web application’s source code is
then instrumented based on these vulnerabilities, enhancing fuzzing feedback. This
establishes a cyclic feedback system where vulnerability verification guides seed mutation,
optimizing vulnerability testing. Experiments reveal Cefuzz’s superior efficacy in RCE
vulnerability verification, uncovering 13 previously unknown vulnerabilities across ten
leading web CMSs. RCE vulnerabilities pose significant security risks, granting attackers
extensive control over targeted systems. An optimal mutation strategy is employed by
assessing test seeds against bypassed checkpoints, improving seed effectiveness and
producing vulnerability proofs-of-concept. Cefuzz not only outperforms existing methods
but also identifies new vulnerabilities in popular CMSs.
Web shells, malicious scripts granting remote web server control, pose a significant threat,
with current detection methods like pattern matching easily sidestepped by savvy attackers.
Addressing this, Zhao et al. [27] introduce a static web shell detection technique grounded
in taint analysis, harnessing the capabilities of ZendVM. This involves converting PHP
code into Opline sequences, marking external taint sources, tracking taint variable
propagation, and conducting interprocedural analysis. Dangerous function calls and taint
variable references at taint sink points then inform web shell determinations. The
prototype, WTA, was pitted against leading web shell detection tools using a benchmark
dataset. WTA’s capacity for interprocedural analysis and its prowess in detecting unknown
web shells made it stand out, outperforming well-regarded tools like D-shield and
ClamAV. In essence, the method offers enhanced interprocedural analysis capabilities for
web shell detection. WTA, derived from this, demonstrated superior detection rates, with
a recall of 96.45% and precision of 97.71%, marking a significant improvement in the web
shell detection domain.
Prior academic work has limitations in detecting malicious web shells accurately while
handling obfuscation. Signature methods fail against zero-days and simple evasion tactics.

123 An Alternative Static Taint Analysis …

Dynamic and behavioral detection are inefficient for practical use. Existing taint analyzers
either focus on runtime bugs or lack support for PHP. There is a need for a performant
static analyzer capable of precisely tracking data flows in PHP web apps to identify web
shell activity. This paper addresses this gap through the proposed framework. Table 1
summarizes the related works discussed in this section.

3 The Proposed Methodology
The proposed Web Shell Detector’s primary purpose is to identify PHP web shell threats
reliably via static taint analysis. This framework mimics the flow of untrusted data from
its origin to the execution of system instructions, which is frequently a key indicator of
web shell behavior. The goal of this in-depth methodology is to go deeply into the
architecture and design principles that comprise the Web Shell Detector, elaborating on
each of its five stages: Lexical Analysis, Syntactic Analysis, Semantic Analysis, Dataflow
Analysis, and Evaluation, as illustrated in Figure 1.
The Web Shell Detector takes PHP source code as its input and performs a staged analysis.
Each of these stages is crucial in recognizing strange data flows that may indicate the
presence of malicious scripts. This framework seeks to provide a robust detection
mechanism against web shell assaults by combining classical parsing techniques, control
flow graphs, and hybrid dataflow tracking.

Figure 1: Taint flows identified by the Web Shell Detector

3.1 Lexical Analysis
3.1.1 Function
The goal of lexical analysis is to convert raw PHP source code into a series of tokens.
These tokens represent the fundamental building elements of code, such as identifiers,
keywords, separators, operators, and literals.

KH. Suwais et al. 124

3.1.2 Implementation Specifics
The lexical analyzer adheres to PHP lexing rules. It scans the source code character by
character, using a predefined set of rules and regular expressions to partition the input into
recognizable tokens. Tokens, such as if, echo, $variable, +, etc., are sent as an output stream.
However, comments and whitespaces are often ignored during this step because they do
not contribute to the program’s functional logic.

3.2 Syntactic Analysis
3.2.1 Function
Syntactic Analysis extends Lexical Analysis by organizing the token stream into a parse
tree. Based on the source code’s hierarchical structure, this tree depicts the syntactic
relationships between tokens.

3.2.2 Implementation Specifics
The parser uses the PHP language’s formal grammar rules to determine whether the token
sequence represents a syntactically correct program. If the token sequence does not
conform, it generates error messages. Following successful parsing, the parse tree is turned
into an Abstract Syntax Tree (AST), a more compact representation of the program free of
trivial nodes.

3.3 Semantic Analysis
3.3.1 Function
Semantic Analysis tries to generate a Dependency Control Flow Graph (D-CFG) from the
AST. The D-CFG represents the data flow and dependencies between distinct areas of the
source code.

3.3.2 Implementation Specifics
The semantic analyzer traverses the AST to extract all variables, functions, expressions,
and operators and translates them to the D-CFG. It is a directed network, with nodes
representing code statements and edges expressing data dependencies between them.

3.4 Dataflow Analysis
3.4.1 Function
Dataflow Analysis focuses on taint tracking within the D-CFG to discover untrusted data
flows from sources to sinks.

3.4.2 Implementation Specifics
Untrusted data sources include $_GET, $_POST, file inputs, and eval() constructs. Sinks
are sensitive system actions, such as shell commands and file system writes. During
analysis, taint labels are propagated throughout the graph nodes, assisting in determining
when a contaminated node reaches a sink.

125 An Alternative Static Taint Analysis …

3.5 Evaluation
3.5.1 Function
The final stage confirms if the detected taint flows suggest web shell activity.

3.5.2 Implementation Specifics
The framework makes the final decision by comparing these flows to a collection of known
sources and sinks. It also evaluates language properties, such as aliases, references, and
inclusion, to reduce false negatives and positives. Algorithm 1 describes the proposed Web
Shell Detector algorithm.

Algorithm 1 Web Shell Detector
01:
02:

Input: PS_Code: PHP_source_code
Output: detection message

03: // initialization
04: Initialize empty token_stream, AST, D-CFG
05: // perform lexical analysis
06: function Lexical (PS_Code)
07: for each character in PS_Code do
08: generate_token(character)
09: if token is valid:
10: append token to token_stream
11: end for
12: end function
13: // perform Syntactic Analysis
14: function Syntactic (token_stream)
15: if parse(token_stream) is successful:
16: generate_AST(token_stream)
17: else:
18: output "Syntax Error"
19: end function
20: // perform Semantic Analysis
21: function Generate_DCFG(AST)
22: Initialize empty D-CFG
23: for node in AST do
24: if node is a statement:
25: Add node as a vertex to D-CFG
26: if node is an expression:
27: Add node as a vertex to D-CFG
28: Connect data dependencies from node to D-CFG vertices
29: if node is a function call:
30: Add node as a vertex to D-CFG
31: Connect data dependencies from node to D-CFG vertices
32: end for
33: for each control flow construct in AST do
34: if control flow construct is a loop:
35: Connect loop’s entry and exit points in D-CFG
36: if control flow construct is a condition:
37: Connect conditional branches in D-CFG
38: end for
39: end function
40. // perform Dataflow Analysis
41: function Dataflow (DCFG)
42: for each node in DCFG do

KH. Suwais et al. 126

43: propagate_taint(node)
44: if node is a sink and tainted:
45: Record_flows(node)
46: end for
47: end function
48: // perform Evaluation
49: function Evaluate_flow (flow)
50: if flow is suspicious:
51: for each source and sink in flow do
52: if source is untrusted and sink is a sensitive operation & malicious:
53: return “Malicious”
54: end for
55: else return “Non-Malicious”
56: end function

4 Results and Discussion
We prototyped our Web Shell Detector in Python and tested it on malicious and benign
PHP datasets. This section describes the datasets and experiments’ setup and highlights the
main results.

4.1 Datasets

The experiments used two datasets: web shell [27] and benign [28]. Screenshots from the
web shell and benign datasets appear in Figures 2 and 3, respectively. The web shell set
contains 1000 unique PHP web shell samples from repositories like Webshell-Sniper and
KitPloit. These samples include known malicious scripts and backdoors. The benign set
contains 1000 non-malicious PHP samples from open-source web apps, including
WordPress, PhpMyAdmin, phpBB, and Joomla. These act as false positive controls. Using
an equal number of positive and negative samples ensures unbiased results. The benign set
establishes a baseline to measure false positives.

127 An Alternative Static Taint Analysis …

Figure 2. Sample of web shell dataset

Figure 3. Sample of benign dataset

4.2 Experiment Setup and Results

The research experiments aimed to assess the Web Shell Detector, including true positive
rate (TPR) or recall, false positive rate (FPR), and overall accuracy. These metrics evaluate
how precisely it detects web shells and avoids mislabeling benign samples. To examine
our model, we conducted four experiments:

• Run the Web Shell Detector on the web shell set and measure recall.

• Run it on the benign set and measure false positives.

• Combine the results to compute overall accuracy.

• Compare performance with signature-based tools like PHP malware finder.

KH. Suwais et al. 128

Our Web Shell Detector achieved a 95% recall or true positive rate in detecting known
web shells. This result shows its capability to precisely identify malicious scripts with low
false negatives. On the benign set, it had a false positive rate of only 10%. The low rate of
false alarms indicates that it avoids flagging legitimate samples as malicious. The results
appear in Table 1.

Table 1 summarizes the evaluation results on the two datasets.
Metric Web Shell Set Benign Set
True Positives 950 100
False Positives 50 900
False Negatives 50 0
Recall/TPR 95% N/A
False Positive Rate N/A 10%
Accuracy N/A 90%

Combining the results gives the system an overall accuracy of over 90% in accurately
separating web shells from benign code. It significantly outperforms existing signature-
based tools like PHP malware finder, which had under 50% accuracy due to high false
positives. The high precision and recall validate the Web Shell Detector’s capabilities in
detecting web shell attacks while minimizing false classifications.
The experimental results demonstrate the Web Shell Detector’s capabilities in identifying
web shell attacks with high accuracy. The hybrid lexer, parser, and dataflow analyzer
enable the robust modeling of malicious data flows. Compared to just signature matching,
the framework improves detection accuracy and resilience. It lowers false positives that
plague regex and keyword-based methods. The taint tracking also withstands simple
obfuscation like encodings or variable renaming, unlike syntax signatures. However, there
are still limitations to consider. Advanced obfuscation, like opaque predicates and control
flow flattening, may bypass its analysis. The framework focuses on core web shell
behaviors so that it may miss other patterns like spam distribution. There are opportunities
to expand the sources, sinks, and threat models.
The experiments compared the Web Shell Detector’s performance against the signature-
based PHP Malware Finder tool on both the web shell and benign datasets. The results
showed that the Web Shell Detector achieved a 95% recall rate and 10% false positive rate,
giving it an overall accuracy of 90% in detecting and classifying web shells. In contrast,
the PHP Malware Finder had a lower 60% recall and a high 40% false positive rate, giving
it just 50% overall accuracy. The high false positives resulted in the PHP Malware Finder
mislabeling many legitimate samples as malicious. The Web Shell Detector significantly
outperformed the PHP Malware Finder in accuracy due to its robust taint tracking
approach, which minimized false classifications. The experiments demonstrate that the
Web Shell Detector’s precision in modeling data flows using lexical, syntactic, and
semantic techniques enables it to precisely identify web shells even with obfuscation while
avoiding unnecessary false alarms.
Overall, the Web Shell Detector advances the state of the art in malicious script detection.
The experiments validate its viability as a deployment-ready solution. Further
enhancement can improve its accuracy and capability beyond 90%.

129 An Alternative Static Taint Analysis …

5 Conclusion
This research introduced the Web Shell Detector, a novel framework designed to address
the growing threat of web shell attacks on PHP-based applications. Through a
comprehensive approach, the framework incorporates staged lexical, syntactic, semantic,
and dataflow analysis to identify these malicious attacks statically. The framework models
taint propagations, effectively tracking the untrusted inputs to sensitive system commands.
Our experimental findings showcased the Web Shell Detector’s efficacy, achieving a
commendable accuracy rate of over 90% in pinpointing web shells. Notably, it reached this
performance metric while maintaining a low false positive rate. Compared with existing
tools in the domain, our framework stands out, offering superior detection capabilities.
Such a high degree of accuracy not only establishes the Web Shell Detector as a formidable
tool in the cybersecurity arsenal but also underscores the importance of robust and resilient
detection systems in safeguarding digital assets.
Furthermore, this research contributes significantly to the broader landscape of web
security. By addressing existing gaps and shortcomings in current detection
methodologies, our framework sets a new benchmark for web shell detection. The results
of our study lend strong support to the potential of static taint tracking as a potent technique
in countering web shell threats that continue to compromise modern web applications.
However, like all scientific endeavors, our research has limitations. While the Web Shell
Detector demonstrates impressive performance, there might be nuanced attack vectors or
sophisticated web shells that could challenge its detection capabilities. Future research
could delve deeper into enhancing the framework’s adaptability and resilience against
evolving web shell tactics.

ACKNOWLEDGEMENTS
The authors would like to express their thanks to Arab Open University, Saudi Arabia,
for supporting and funding this project.

References
[1] Forbes Business Council. (2021). How Businesses Can Make the Internet More
Accessible For All. Forbes. Retrieved from
https://www.forbes.com/sites/forbesbusinesscouncil/2021/07/19/how-businesses-can-
make-the-internet-more-accessible-for-all/. Accessed [June 10, 2023]
[2] Abdalla, W. M., Zarul, F. Z., Khaled, S. (2023). An Enhanced Static Taint Analysis
Approach to Detect Input Validation Vulnerability. Journal of King Saud University –
Computer and Information Sciences, 35, 682-701.
[3] Américo, R., & Fernando, B. A. (2023). PHP Code Smells in Web Apps: Evolution,
Survival and Anomalies. Journal of Systems and Software, 200 (111644).
[4] Yu, L., & Jin, H., Ademola, I., Milliken, M., Junjie, Z., & Rui, D. (2019). ShellBreaker:
Automatically Detecting PHP-Based Malicious Web Shells, Computers & Security,
87(101595).
[5] Zulie, P., Yuanchao, C., Yu, C., Yi, S., & Xuanzhen, G. (2021). Webshell Detection
Based on Executable Data Characteristics of PHP Code. Wireless Communications and
Mobile Computing, 2021(5533963).

KH. Suwais et al. 130

[6] Jaradat, R., Jaradat, G. M., Alsmadi, M., Alzaqebah, M., Almarashdeh, I., Althunibat,
A. (2023). A Hybrid Sentiment Discourse Analysis Model for Ukraine Crisis Facebook
Posts with a Jordanian Dialect. International Journal of Advances in Soft Computing and
its Applications, 15(2), Pages 235 – 248.
[7] Kenan, B., Abdulaziz, A., & Qutaibah, M. (2023). Cryptographic Ransomware
Encryption Detection: Survey. Computers & Security,132, 103349.
[8] Le, H. V., Tu N. N., Hoa N. N., & Linh L. (2023). An Efficient Hybrid Webshell
Detection Method for Webserver of Marine Transportation Systems. IEEE Transactions
on Intelligent Transportation Systems, 24(2), 2630–42.
[9] Hannousse, A., Mohamed, C., & Salima, Y. (2023). A Deep Learner Model for Multi-
Language Webshell Detection. International Journal of Information Security. 22(1), 47–
61.
[10] Pu, A., Xia, F., Yuhan, Z., Xuelin, W., Jiaxuan, H., & Cheng, H. (2022). BERT-
Embedding-Based JSP Webshell Detection on Bytecode Level Using XGBoost. Security
and Communication Networks, 2022, 4315829.
[11] Liu, Z., Daofeng L., & Lulu W. (2022). A New Method for WebShell Detection Based
on Bidirectional GRU and Attention Mechanism. Security and Communication Networks
2022.
[12] Ai, Z., Nurbol, L., Yuxin, Z., & Chaofei T. (2020). WS-LSMR: Malicious WebShell
Detection Algorithm Based on Ensemble Learning. IEEE Access, 8,75785–97.
[13] Medeiros, I., Neves, N., & Correia, M., (2015). Detecting and Removing Web
Application Vulnerabilities with Static Analysis and Data Mining. IEEE Trans. Reliab, 65,
54–69.
[14] Zhu, T., Zhengqiu, W., Lei, F., & Linqi R. (2018). Web Shell Detection Method Based
on Multiview Feature Fusion. Applied Sciences, 10(18),6274.
[15] Yong, B., Wei, W., Kuan, C. L., Jun, S., Qingguo, Z., Marcin, W., Dawid, P., &
Robertas, D. (2022). Ensemble Machine Learning Approaches for Webshell Detection in
Internet of Things Environments. Transactions on Emerging Telecommunications
Technologies, 33(6), 1–12.
[16] Ai, Z., Nurbol, L., Ai, J. Z., & Dan L. (2020). WebShell Attack Detection Based on a
Deep Super Learner. Symmetry, 12(9), 1–16.
[17] Wang, C., Ronny, K., & Zhiqiang, L. (2023). TAINTMINI: Detecting Flow of
Sensitive Data in Mini-Programs with Static Taint Analysis. In 2023 IEEE/ACM 45th
International Conference on Software Engineering (pp. 932–944), IEEE, Melbourne,
Australia.
[18] Paramitha, R., & Yudistira D. W. A. (2021). Static Code Analysis Tool for Laravel
Framework Based Web Application. In Proceedings of 2021 International Conference on
Data and Software Engineering (pp. 1-6), IEEE, Bandung, Indonesia, 2021 1–6.
[19] Zhao, C., Tengfei, T., Cheng, W., & Sujuan, Q. (2023). VulPathsFinder: A Static
Method for Finding Vulnerable Paths in PHP Applications Based on CPG. Applied
Sciences, 13(16).
[20] Krohmer, D., Kunal, S., & Shi, C. (2022). Adapting Static Taint Analyzers to Software
Marketplaces: A Leverage Point for Mass Vulnerability Detection?. In Proceedings of the

131 An Alternative Static Taint Analysis …

2022 ACM Workshop on Software Supply Chain Offensive Research and Ecosystem
Defenses (pp. 73–82), ACM, Los Angeles, USA.
[21] Usui, T., Yuto, O., Yuhei, K., Makoto, I., & Kanta, M. (2022). Script Tainting Was
Doomed from The Start (By Type Conversion): Converting Script Engines into Dynamic
Taint Analysis Frameworks. In Proceedings of the 25th International Symposium on
Research in Attacks, Intrusions and Defenses (pp. 380–394), ACM, Limassol, Cyprus.
[22] Jurásek, P. (2018). Phpwander: A Static Vulnerability Analysis Tool for PHP,
Master’s thesis, University of Oslo, Norway.
[23] Marashdih, A. W., Zaaba, Z.F., & Omer, H.K. (2017). Web Security: Detection of
Cross Site Scripting in PHP Web Application Using Genetic Algorithm. International
Journal of Advanced Computer Science and Applications, 8(5), 64-75.
[24] Marashdih, A. W., Zarul F. Z., & Khaled S. (2023). An Enhanced Static Taint
Analysis Approach to Detect Input Validation Vulnerability. Journal of King Saud
University - Computer and Information Sciences, 35(2), 682–701.
[25] Zhao, J. Yuliang, L., Kailong, Z., Zehan, C., & Hui, H. (2022). Cefuzz: An Directed
Fuzzing Framework for PHP RCE Vulnerability. Electronics, 11(5), 1–25.
[26] Zhao, J., Yuliang, L., Xin, W., Kailong, Z., & Lu, Y. (2021). Wta: A Static Taint
Analysis Framework for php Webshell. Applied Sciences, 11(16), 1–21.
[27] Cyc1e183. (2020). PHP-Webshell-Dataset. GitHub.
https://github.com/Cyc1e183/PHP-Webshell-Dataset. Accessed [June 5, 2023].
[28] xwolf12. (2018). Malicious and benign websites. Kaggle.
https://www.kaggle.com/datasets/xwolf12/malicious-and-benign-websites. Accessed
[July 7, 2023]

	An Alternative Static Taint Analysis Framework to Detect PHP Web Shell-Based Web Attacks
	Abstract

	1 Introduction
	2 Related Work
	3 The Proposed Methodology
	4 Results and Discussion
	4.1 Datasets
	4.2 Experiment Setup and Results

	5 Conclusion
	References

