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Abstract

Prediction of gene-drug-disease interactions have talented new
insights in biology. Discovering unknown interactions will provide
new therapeutic approaches to explore gene expressions. Recent
improvements in  machine learning techniques have gotten
considerable interest due to higher efficiency, accurate results, and
their lower cost. However, most of the studies were ignoring relevant
associations, by representing only drug-disease interactions on a
network while public available data offers a large variety of
interactions. Additionally, some computational techniques used in this
domain are faced with new challenges, related to the organization of
heterogeneous data which suffer from a high imbalance rate since
there are extensively more non-interacting gene-drug-disease triplets
than interacting ones. In this paper we present integration of
heterogeneous biological data about genes, drugs, and diseases to
build a model, and building a new graph representation relating gene-
drug-disease interactions. Using extreme gradient boosting
(XGBoost) algorithm, we have been able to extract a list of valid
interactions about gene-drug-disease triplets, and a list of gene-drug
pairs related to lung cancer.

Keywords: Biological heterogeneous data, Data integration, Gene-Drug-
Disease interactions, Machine learning.

1 Introduction
Traditional methods to develop new drugs are costly and time-consuming [1-4].
Computational techniques have gained increased interest to improve drug

discovery. Nowadays, network analysis has revealed promising results in
manipulating biological heterogeneous data. In addition, advanced new
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technologies have generated a large amount of disparate data describing specific
aspect of cells named Omics layers [5]. Using data integration methods along with
network analysis have shown effective results to extract new interactions between
biological data [6].

Data integration interests the creation of a model that combines data coming from
different sources in order to explore new interactions more effectively. It has gained
a lot of attention due to the large and different Omics datasets available. Several
public databases provide the research community with a large amount of biological
heterogeneous data which enabled to study biological processes and to support new
findings in biology.

Network analysis are widely used in biology and extremely improved the
exploration of relations among heterogeneous data. Biological systems are often
represented as networks. They provide a mathematical representation of
connections found in the literature. Consequently, they have become essential to
understand biological mechanisms. Predictions are one of the most applied
applications of network analysis, mainly to propose novel interactions. In this
regard, machine learning (ML) algorithms have been widely used to build
prediction models. Although, the efficiency of these techniques depends mostly on
the training data and the preprocessing effort carried out over it.

Nowadays, numerous genes and drugs heterogeneous data is generated. This
encourages the use of ML methods to learn from this data. One of the main
difficulties with predictions of gene-drug interactions and gene-disease interactions
is the volume of the data [7]. The use of an unbalanced dataset will result in an
overfitting model. The number of single nucleotide polymorphisms (SNPs) present
in the dataset highly affects the number of positive interactions, and genetic
heterogeneity which may be common in complex diseases. Moreover, most of the
studies do not present the preprocessing phase to handle unbalanced datasets such
as feature selection [8].

Our contribution is to integrate heterogeneous data into two layers and to create a
model capable of predicting gene-drug-disease interactions. We take full advantage
of the disparate biological data present in DisGeNET and DGIldb databases to infer
gene-disease interactions and gene-drug interactions. We constructed our dataset
based on the inferred interactions and build a novel gene-drug-disease network. We
learned from our data to predict valid interactions and evaluated three classifiers:
XGBoost, ID3, and C4.5. We used the confusion matrix and individual feature
contribution to evaluate the performance of the model. Our technique revealed
effective and provided highly accurate prediction results.

The paper is organized as follows: In section 2 we present some related works. Our
methodology is explained in section 3. The obtained results are discussed in section
4, followed by the conclusion.
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2 Related Work

Statistical techniques conducted in predictions of biological interactions are
founded on structure-based approaches or text mining methods. In structure-based
approaches, the focus was put on the physical and chemical characteristics of the
studied molecules. For example, prediction of gene-disease associations is based on
genome-wide association study (GAWS); which selects a chromosome interval
with candidate genes [9]. Similarly, prediction of drug-target interactions (DTISs)
focuses on the binding drug sites. They require prior information on the binding
sites. Consequently, they eliminate genes with unknown sequences. In text mining
methods, the interactions between biological entities are inferred from the medical
literature. Typically, this technique completely ignores unidentified interactions.
Therefore, statistical methods have shown their limitation, besides they are time-
consuming.

Computational methods have gained a lot of interest to improve prediction of
biological interactions. Many methods have been proposed, similarity-based
methods calculate similarity score between drug profiles to collect drug-drug
interactions (DDIs). Vilar et. al [10] described numerous biological profiles that are
used to compare the similarity. Drug structural profile is based on the fact that
structurally similar drugs tend to target related genes [11]. Furthermore, similarity
metrics have also been a subject of interest, Ferdousi et. al [12] compared several
metrics and used the most optimal one to predict DDIs. The major disadvantage of
these methods is to find a suitable threshold of similarity that is highly affected by
false DDlIs.

Networks-based methods have also been used to predict biological interactions, by
constructing a network of interactions and then predict novel associations based on
network analysis. In [13], the authors built a drug-drug similarities network based
on several drug features and then used matrix factorization techniques to predict
potential DDIs. Comparatively, in [14] the authors considered the interactions of
DrugBank database to create an ensemble-based classifier using two techniques of
matrix factorization: adjacency matrix factorization (AMF) and adjacency matrix
factorization with propagation (AMFP). Other methods based on protein-protein
interaction (PP1) networks covered a large number of DDIs detection. In [15] the
authors used random walk algorithm to capture distant interference on PPI network.
They assumed that DDIs are affected by close interference of triggered gene
pathways. The PPI networks based-methods take full advantage of drug actions, but
they suffer from incompleteness.

In the last few years, several ML methods have given more importance to data
integration to improve the accuracy of predictions. Consequently, a substantial
number of studies using different supervised learning approaches have been
conducted. For example, in [16] the authors make use of a supervised manner to
learn a kernel from heterogeneous similarities and different interaction types to
predict DDIs. To evaluate their approach, they constructed a dataset from
DrugBank database. Tong et al. [17] proposed a method to predict drug-target
interactions using gradient boosting machines called SimBoost. The authors used
features about drug-target (DT) pairs extracted from their network along with
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similarity-based information. In a recent work on drug-gene interaction predictions,
Zhu et al. [18] extended the metapath2vec and metapath2vec++ models into the
gene-drug field and used both models on a biological heterogeneous network which
involves three types of nodes: drugs, genes, and adverse drug reactions (ADRS).
Actually, the two models can effectively represent the semantic of the
heterogeneous information network. Even so, the precedent methodology was
evaluated on a dataset comprising fewer ADR interactions than gene-drug pairs
which may highly impact the accuracy of predictions. Most of the studies using ML
methods require a feature engineering step. In fact, features used in the learning
process highly affect the performance of the model. Nevertheless, current
experiences do not present a comparative study of the used properties to reveal
which characteristics are behind the prediction and which are less informative.

In this paper, we present a network-based approach to integrate heterogeneous
biological data about genes, drugs, and diseases. We used an ensemble learning
classifier, that has proven his superiority against ones usually used in the literature,
to predict gene-drug-disease interactions. Furthermore, we present the feature
engineering phase conducted in this study.

3 Methodology

Firstly, we describe the followed process to construct our dataset and to succeed the
training phase. Gene-disease interactions are extracted from DisGeNET database.
It is a discovery platform which stores human genes and variant-disease
interactions. It also includes mendelian, rare, complex, and environmental diseases,
as well as abnormal phenotypes and traits [19-21]. We selected 84038 curated gene-
disease associations to constitute the gene-disease layer. Gene-drug interactions are
collected from DGIdb database, a collection of various sources of gene-drug
interactions as well as the druggable gene categories, 32107 gene-drug interactions
are selected to constitute the gene-drug layer.

3.1 Graph Construction

A commonly used method to build an integrated graph is to project the edges of
different graphs to the same set of nodes [6]. Hence, to construct our graph, we
merged gene-disease interactions and gene-drug interactions into the same set of
nodes. The created graph is named GDD (Gene-Drug-Disease). The overall
framework is shown in Fig 1.
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Fig 1. Overall framework we followed to build Gene-Drug-Disease interactions

network and to learn from it.

We investigate several features to perform the training phase which is a supervised
classification, where the target feature that we attempt to predict is the score value.
The categorical features involved:

Gene name;
Disease name: name of the disease or the abnormal phenotype;
Drug name;

Evidence level (EL): a measure that denotes the strength of evidence of the
interaction. It takes 6 values: strong, definitive, moderate, limited, disputed,
and no reported evidence. Its value is computed by ClinGen.

The numerical features used:

Evidence index (El): a measure that shows the existence of paradoxical
statements in articles talking about the same interaction;

Disease specificity index (DSI): a measure that reveals if a gene is highly
coupled with multiple diseases or only a limited number of diseases;

Disease pleiotropy index (DPI): a measure that indicates if a set of diseases
connected to a gene are similar among them;

Probability of being loss of function intolerant (pLI): a gene metric that
defines how much is a gene intolerant to loss-of-function variation (LoF
variation). Its value is provided by the GNOMAD consortium;

Score: defines the strength of the interactions in our GDD graph. It is a
continuous value that ranges between 0 and 1, weak and strong associations
respectively. its value is computed by DisGeNET database.
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The values of the features are obtained from the DisGeNET database which
computes them and stores them along with the interactions. The values for El, DSI,
and DPI are given by the following equations:

N

El = pubsyositive (1)
Npubstotal
Here, Npubsposimeis the number of publications supporting the interaction and
Npubs,,.,, 1S the total number of publications.
logz ()
DSl = —2T )
1ng(N—T)

Here N, is the count of diseases linked to a gene and Ny is the total number of
diseases.

— (Nac
DPI = (NTC) 100 (3)
Here, N, is the number of the various disease classes of the diseases related to the

gene and Ny is total number of disease classes in DisGeNET.

Our training set is constituted of 90% of the total samples and the 10% remaining
samples is considered for the test set. The score feature is a continuous value that
ranges between 0 and 1, this feature is mapped into 6 discrete values, after a
resampling operation. the result is 6 target classes, denoted as follows: class 0, class
1, class 2, class 3, class 4, and class 5. Table 1 shows some data from the training
set.

Table 1: Some data of the training set.

Gene Disease Name Drug El EL DPI DSl pLI Score
Name Name
BRAF Neurofibromat ~ AEW- 1 strong 0.79 0.35 0.9 0.38
osis 1 541
CASR Pancreatitis ASP 0.6 limited 0.65 0.47 0.060 0.46
7991
NRAS Noonan E-6201 1 definitive 0.69 0.42 0.52 0.77
Syndrome
ALMS1 Alstrom ZINC 0.96 definitive 0.62 0.5 0 1
Syndrome ION
ADA melanoma EHNA 1 no reported 0.79 0.4 0 0.02
evidence

Decision tree-based algorithms are commonly used for classification problems. The
goal is to predict a discrete value based on rules learned from the data features
[22,23]. In our work, we compare several algorithms using trees to select the best
association rule discovery method. We have compared the accuracy score of 3
algorithms: Iterative Dichotomiser 3 (ID3), C4.5, and XGBoost. Table 2 shows the
results obtained for each algorithm.

Table 2: Accuracy score obtained for compared algorithms.
Algorithm ID3 C4.5 XGBoost

Accuracy score  0.678 0. 706 0.898
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XGBoost [24] clearly outperforms ID3 and C4.5 in term of accuracy score. It is
built on top of universal gradient boosting methods with boosting capabilities to
generate an ensemble of decision trees. Consequently, it turns out to be the best
classifier among the compared algorithms.

4 Results, Analysis and Discussion

Our graph data is quite large. It represents more than 3 million gene-drug-disease
interactions. To evaluate the performance of our classifier we created a sub dataset
with samples randomly selected. The newly created sub dataset contains 10000
gene-drug-disease interactions. We used the Scikit-Learn implementation to train
and evaluate our model. We used the grid-search function to obtain the optimal
values for the hyperparameters of the model. The tuning we have performed
achieved highest performance with 1000 boosted trees and a max depth of 7 level.
To perform the k-folds cross validation technique our training data is split to k=10
folds [25]. This value was fixed experimentally, after using different values of k
and comparing results.

Fig 2 shows the first 200 samples of the prediction results compared with their
original values. Among them 7 were misclassified.
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Fig 2. Predicted classes of the first 200 samples of our test set

Table 3 summarizes results of the confusion matrix. It is a way to visualize the
capabilities of our ML model. It designates in its entries the count of predictions
where the model correctly or incorrectly classified observations.

Table 3: Results of the 10-fold cross-validation of our sub dataset.

class precision recall fl-score count of samples
0 0.98 1.00 0.99 880
1 0.92 0.77 0.84 30
2 0.97 0.95 0.96 37
3 1.00 0.88 0.94 40
4 1.00 1.00 1.00 11
weighted avg 0.98 0.98 0.98

Most samples present in the sub dataset are weak interactions and belong to class
0, strong interactions that belong to class 5 are not present because this class is
minority. The recall value for class 1 is quite low; 77% compared to other classes,
because our model is generating many false positive samples for class 1. This large
unbalance in our data resulted to an overfitting (for each class). To overcame this
drawback, we performed classical information gain to understand how the used
features impact predicted results. There are three standard important measures to
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explore in a model using trees. The first measure is based on the weight, it shows
how many times a feature was selected to divide the data. The second measure is
based on the cover, it’s based on weighting the selected feature by the count of
training samples going through those splits. The third measure is based on the gain,
it presents the median training loss reduction gotten by selecting a feature to divide
the samples. These measures remain global feature attribution and we need
individualized explanation for each feature to assign feature importance.

The SHAP method [26] is a technique to find the mean variation in predictions
taking into consideration selection of all possible features. Fig 3 shows individual
feature contributions using SHAP method. It illustrates participation of each feature
of the model, the rows show the impact of each feature on the predicted class.
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mean(|SHAP value|) (average impact on model output magnitude)

On

Fig 3. Individual feature contribution based on used sub-dataset, using six classes

Our experiments show that some features have weak impact on some classes or no
impact at all. For example, the EI feature takes values that belong to only four
classes. Unlike the disease name feature which takes values that belong to all
classes. We conclude that the choice of the number of classes is very important.
Moreover, every feature used in the training phase should contribute to the
prediction of the target class. Our experimental results seem to indicate that a choice
of three classes correspond to our need in terms of feature contributions. Fig 4
shows the individual feature contributions for our model after mapping the score
value to three classes.
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Fig 4. Individual feature contributions based on used sub-dataset, using three
classes.
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Based on the results we got form our experiments on feature contribution. We
manually constructed a new balanced dataset with 10000 samples. Learning from
our new balanced dataset, after mapping the score to 3 classes, we successfully
increased the performance of our model. We achieved a training score of 0.9877
with a mean cross-validation score of 0.97 and a mean squared error of 0.035. Table
4 shows the results of our trained model, there is a higher performance in term of
recall for each class.

Table 4: Results of the 10-fold cross-validation of our balanced dataset.

class precision recall fl-score count of samples
0 0.99 0.99 0.99 334
1 0.96 0.94 0.95 321
2 0.96 0.97 0.96 345
weighted avg 0.97 0.97 0.97

We classified the interactions from our graph. Table 5 represents top-20 candidates
obtained by our balanced model. We sorted the triplets by descending order of the
strength of interactions.

Table 5: List of 20-top candidates of gene-drug-disease triplets predicted from
used dataset.

rank gene disease drug
1 EGFR Non-small cell lung cancer metastatic Erlotinib
2 NTRK1 Intellectual disability Suramin
3 ERBB2 Malignant neoplasm of breast Trastuzumab
4 BRAF Adenocarcinoma of lung (disorder) Alpelisib
5 MAP3K1 Non-small cell lung cancer metastatic Carboplatin
6 KRAS Adenocarcinoma of lung, stage IV Atezolizumab
7 DSCAM Non-small cell lung cancer Carboplatin
8 KCNJ11 Diabetes mellitus Naminidil
9 GRB2 Adenocarcinoma of lung (disorder) Dactinomycin
10 ACE Congestive heart failure Cilazapril
11 CDH1 Carcinoma of urinary bladder, superficial Erlotinib
12 HMGCR Aicardi-goutieres syndrome 1 Simvastatin
13 GHRL Diabetes nephropathy Celecoxib
14 CYP2B6 Adrenal cortical hypofunction Trofosfamide
15 HLA-DRB1 Endothelial dysfunction Lym-1
16 BRCA2 Metastatic prostate carcinoma Talazoparib
17 LEP Monogenic obesity Risperidone
18 MET Malignant neoplasm of kidney ALTIRATINIB
19 BRCAZ2 Prostate carcinoma Evofosfamide
20 ADRB2 Diabetes Propranolol

In the group of top-20 triplets found with our prediction model (Table 5). It is
important to mention that unreleased gene-drug-disease triplets were joined with
widely studied candidates in the field of cancerology. As an example, it is
commonly recognized that aberrant epidermal growth factor receptor (EGFR)
signaling led to varied oncogenic phenotypes [22]. Alongside with our GDD graph,
investigations have revealed that the EGFR gene mutation was related with EGFR-



Hamza Hanafi et al. 44

targeted agents’ efficacy such as Erlotinib’s (rank 1) in the case of non-small cell
lung cancer (NSCLC) [27,28].

Contrariwise, the gene MAP3K1 associated with Carboplatin and NSCLC disease
(rank 5) appeared novel. On advanced NSCLC patients treated with this
antineoplastic chemotherapy drug, the genome-wide association study shows that a
single nucleotide polymorphism in the DSCAM gene has been identified as a
prognostic biomarker candidate [29]. This sustains our gene-drug-disease triplet in
rank 7 and reveals possible MAP3K1-DSCAM interaction which needs to be more
studied.

Lung cancer is provoked by the excessive cell development in malignant lung
tumor. It is known as the most frequently causes of deaths in men and second in
woman. Lung cancer is categorized to two sorts: small cell lung cancer and non-
small cell lung cancer. We ranked top-20 predicted candidates related to lung
cancer. Table 6 shows the list of gene-drug pairs we have found.

Table 6. List of 20-top candidates of gene-drug pairs predicted from our data
related to lung cancer

rank gene drug
1 EGFR Erlotinib
2 BRAF Alpelisib
3 MAP3K1 Carboplatin
4 KRAS Atezolizumab
5 DSCAM Carboplatin
6 GRB2 Dactinomycin
7 CASP8 Conatumumab
8 PIK3CA Linsitinib
9 TGFB1 Amifostine
10 TNF Adalimumab
11 ACE Benazepril
12 TP53 Abemaciclib
13 PIK3CA Afuresertib
14 PTEN Abiraterone
15 AKT1 Gigantol
16 HRAS Trifluoroethanol
17 ELN Vonapanitase
18 IGF1R Brigatinib
19 TGFBR2 Galunisertib
20 NTRK3 Radicicol

Among all pairs in the prediction list, there are 18 known causal genes unraveled
as true positives. HRAS, the rank 16 gene, belongs to the Ras oncogene family.
Malfunctioning in this gene is elaborated in a varied spectrum of cancers. TGFBR2
is a transforming Growth Factor Beta Receptor 2 which may induce esophageal
cancer. According to GeneCards database, two genes are susceptive for lung cancer,
as for AKT1 and TP53. They contribute in the small cell lung cancer pathway
according to PathCards database. Therefore, 18 gene-drug ranked within top-20
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have supportive evidence. In addition, all the shown pairs have strong association
to linked drugs according to DGIdb.

5 Conclusion

In this work, we proposed a new approach on how to integrate and validate
interactions between gene-drug-disease by learning from heterogeneous biological
data. We constructed two layers of gene-disease and gene-drug interactions to build
an integrated network. Afterwards, we used the XGBoost classifier on a set of
10000 interactions in the training phase. Our prediction model was evaluated using
several methods and achieved a f1-score of 0.97. Moreover, we used our classifier
to identify and rank 20-top gene-drug-disease interactions. The results were
interpreted and compared to the medical literature. We have also extracted a list of
top-20 gene-drug pairs related to lung cancer which contained numerous known
causal genes unraveled as true positive. Results we obtained with our approach are
particularly promising in order to formulate new hypothesis about treatments that
might provide multiple advantages.
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