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Abstract

The internet makes human life easier, one of them is in ordering
food. By only using smartphones and opening food delivery features,
in the application, consumers can order food from restaurants that
collaborate with the e-commerce. The case study that we did was
classifying the types of chicken dishes namely “ayam geprek”,
“ayam goreng”, and “ayam bakar” using CNN method. CNN
method is a popular method for image classification. This research is
doing image classification using CNN method based on GPU. From
several models built, obtained the best model with an accuracy of
99% and training speed about 233 seconds. While for comparison of
CNN method based on CPU and GPU obtained the conclusion that
the most rapid training process using GPU.
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1 Introduction

In this digital era, the internet has a huge influence on human life. Along with the
development of the era, now humans do not need to bother in searching for
information so that people are getting rich in information. With the internet,
humans will be greatly helped in terms of ease and speed of delivery, delivery,
and acceptance of information. From this ease, many companies can market their
products online or known as e-commerce. Many e-commerce in Indonesia is
expanding its business in other fields. One of the service features developed is
food delivery such as food delivery in a restaurant. Only by using smartphones
and opening food delivery features within the application, consumers can order
food from restaurants that collaborate with the e-commerce.
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Food delivery business is not only developed in Indonesia. According to a study
from McKinsey, based on a six-month study covering 16 countries around the
world, provides insight into the rapidly changing state of today's market. The food
delivery business is changing rapidly as new online platforms are racing for
markets and customers across America, Asia, Europe and the Middle East.
Although this type of business is new, food delivery is attractive because it's high
valuation, even worth more than $ 1 billion.

The case that just happened in Indonesia is there was one customer of food
delivery which complains because the food delivered is fallen apart, but what she
ordered is ayam geprek. Ayam geprek is a fried chicken which crushed with
sambal, so this customer was disappointed to the food delivery service. This is the
customer's ignorance of the form of food ordered and the mismatch between the
food image in the app and the real one.

Based on the above background, the authors are interested to make a classification
of chicken dishes using the Convolutional Neural Network (CNN). Where CNN is
a classification method used for digital image classification.

Table 1: Training Time CPU versus GPU
Batch Size Training Time | Training Time GPU

CPU GPU Speed Up
64 images 64 s 7.5s 8.5x
128 images 124 s 14.5s 8.5x
256 images 257 s 28.5s 9.0x

From research conducted by NVIDIA Deep Learning Institute about GPU
acceleration on image classification using CNN [9], obtained image classification
results done on GPU have training time faster than training time on CPU.
Therefore, this study raised the computational theme using GPU to find the best
CNN model in doing chicken dishes classification. Determination of the best
CNN model can be seen from the results of high accuracy and the fastest training
time.

The organization of this paper is as follows; Section 2 outlines the previous
related works on CNN. Section 3 presents the problem formulation states what
this research would do and methods of the research are discussed in Section 4.
Finally, the experimental results and conclusions are presented in Section 5 and 6
respectively.
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2 Related Work

During the last years, several works have been investigated to improve the
performance of neural networks on the GPU. In 2006, Chellapilla et. al [3] have
released the CNN to the GPU. They presented three independent approaches
namely CPU no BLAS, CPU with BLAS, and GPU for high-performance
implementation of CNN for document processing. Experimental results on real-
world recognition problems show that dramatic speedups of up 3.00X on the CPU
and 4.11X on the GPU.

Lahabar et al. [7] have made one of the first neural networks for the new unified
shader architecture using CUDA. They implement a GPU on two applications
intensive data pattern recognition operations: Parzen Window and ANN. The
algorithms exploit high computing power of the GPU and provide the fast
performance of the algorithms. Implementation of GPU on Parzen Window can
compute the conditional or posterior probability in about 14 microseconds.
Similarly, the ANN GPU can perform one-period batch training with 56 thousand
samples in about 200 milliseconds.

In 2012, Krizhevsky et al. [6] have made the ImageNet classification with deep
convolutional networks with convolution operation using GPU application. A
deep convolutional neural network has been trained, dividing the object into 1000
different classes from 1.2 million images with high resolution and a very effective
speed. Obtained a very low classification error rate (0.15) and the success of the
classification of the convolutional neural network were observed.

3 Problem Formulations

This research is to classify chicken dishes based on three classification class:
ayam geprek, ayam goreng, and ayam bakar. Since the purpose of this case study
is to obtain a CNN model with a high degree of accuracy, the problem is how the
best CNN model architecture should be built. In addition, we also want to get the
model with the fastest training time based on the GPU being used.

4 Method
4.1 Convolutional Neural Network

Convolutional Neural Network (CNN) is a neural network is used specifically to
process the data structured grid, one of them in the form of image two
dimensional. The convolution process is a linear algebra operation that multiplies
the matrix of the filter on the image to be processed. The process is called a layer
of convolution and is one of many types of layers that can own in one network.
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Fig. 1. CNN Architecture!

Convolution layer is the main layer and most important to use. Another type of
layer that can be used is pooling layer. The pooling layer is used to extract the
average value or maximum value of the pixel portion of the image. Each input
layer entered has different volumes and is represented by depth, height, and width.
The amount to be obtained may vary depending on the filtration result of the
previous layer and the number of filters used.

4.1.1 Operation of Convolution

The convolution operation is an operation on two functions of a real-valued
argument [5]. This operation applies the output function as feature map of the
input image. These inputs and outputs can be seen as two real-valued arguments.
Formally a convolution operation can be written with the following formula,

s(t) = (x=w)(t) (1

The function 5(t) gives a single output of feature map; the first argument is the
input which is the x and the second argument w as the kernel or filter. If we see
the input as a two-dimensional image, then we can assume t as pixel and replace
it with i and j. Therefore, operations for convolution to inputs with more than one
dimension can be written as follows,

SG7) = (K * D) =ZZI(i—m,j—n]K(m,nj 2)

The equation (2) is the basic calculation in the convolution operation where ¢ and
j are the pixels of the image. The calculations are commutative and appear K as
the kernel, I as input and the kernel can be reversed relative to the input.

Alternatively, the convolution operation can be seen as the matrix multiplication
between the input image and the kernel where the output can be computed with
the dot product [10].

! https://www.mathworks.com
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4.1.2 Convolutional Layer

The convolutional layer consists of neurons arranged in such a way that it forms a
filter of length and height (pixels). For example, the first layer on the feature
extraction layer is usually a 5x5x3 convolution layer, 5 pixels length, 5 pixels
high and 3 or 3 pieces thick according to the channel of the image. All three of
these filters will be shifted to all parts of the image. Each shift will be performed
dot operation between the input and value of the filter to produce an output or
commonly referred to as the activation map or feature map.

Stride is a parameter that determines how many filter shifts. If the value of stride
is 1, then the convolutional filter will shift as much as 1 pixel horizontally and
then vertically. In the illustration in Fig. 2, the stride used is 2. The smaller the
stride it will be the more detailed information we get from an input but require
more computation when compared with the large stride. But keep in mind that by
using a small stride we will not always get a good performance.
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Fig. 2. Feature Map®

Padding or Zero Padding is a parameter that determines the number of pixels
(containing the value 0) to be added on each side of the input. It is used in order to
manipulate the output dimensions of the convolutional layer (feature map).

2 http://cs23 1n.github.io/convolutional-networks/
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The purpose of padding usage is the dimension of the output of the convolutional
layer is always smaller than its input (except the use of a 1x1 filter with stride 1).
This output will be reused as input from the convolutional layer so that more
information is wasted. Using padding, we can adjust the output dimension to
remain the same as the input dimension or at least not drastically reduced. So we
can use convolutional layers so that more features are successfully extracted.
Padding is also able to improve the performance of the model because the
convolutional filter will focus on the actual information that is between the zero
padding. In Fig. 2, the dimension of the actual input is 5x5, if done convolution
with 3x3 filter and stride of 2, it will get feature map with size 2x2. But if we add
zero padding as much as 1, then the resulting feature map is 3x3 (more
information is generated). To calculate the dimension of the feature map we can
use the formula as below,

W —N+42P
output = ————— + 1 (3)

where W is length/high of input, NV is length/high of the filter, P is padding, and §
is stride.

Pooling layers usually reside after convolutional layer. In principle, the pooling
layer consists of a filter with a certain size and stride that will shift across the
entire feature map area. Pooling commonly used is max pooling and average
pooling. For example, if we use max pooling 2x2 with stride 2, then at each filter
shift, the maximum value in the 2x2 pixel area will be selected, while the average
pooling will select the average value.
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Fig. 3. Max Pooling®

The purpose of using pooling layer is to reduce the dimension of the feature map
(down sampling), thus accelerating the computation because the parameters to be
updated are less and overfitting.

3 http://cs23 1n.github.io/convolutional-networks
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4.1.3 Fully-Connected Layer

The featured map generated from the feature extraction layer is still a
multidimensional array, so it must either flatten or reshape the feature map into a
vector to be used as input from the fully-connected layer.

The Fully-Connected layer is a layer in which all the activation neurons of the
previous layer are all connected with neurons in the next layer just like regular
neural networks. Each activation of the previous layer needs to be converted into
one-dimensional data before it can be connected to all the neurons in the layer.

The Fully-Connected layer is usually used in the multi perceptron layer method
and aims to process the data so that it can be classified. The difference between
the fully-connected layer and convolution layers is that neurons in the convolution
layer connect only to specific regions of the input, while the Fully-Connected
layer has an overall connected neuron. However, both layers still operate dot
products, so the function is not so different [4].

4.2 Compute Unified Device Architecture (CUDA)

GPU (Graphic Processing Unit) [9] is a special processor for 3D graphics parts of
the microprocessor. GPU popularized by NVIDIA, NVIDIA also developed a
technology called CUDA (Compute Unified Device Architecture). CUDA
(Compute Unified Device Architecture) is hardware and software architecture to
manage computation in parallel on GPU hardware. Each CUDA-enabled GPU
device can act as a parallel data computing device in bulk with a large amount of
memory. This allows for much greater performance compared to traditional CPU.
This performance improvement is caused by different GPU hardware designs with
CPU. Where multicore CPUs provide large cache and perform full x86
instructions on each core, while smaller GPU cores are intended for throughput
floating point.

This CUDA architecture allows software developers to create programs running
on NVIDIA-made GPUs with syntax similar to the familiar C syntax. The CUDA
architecture consists of three basic parts that help system developers to take
advantage of the efficient computing capabilities of the graphics card. CUDA
divides the device into grids, blocks, and threads in a hierarchical structure as in
the Fig. 4. Because there are a number of threads in a block and the number of
blocks in a grid and a number of grids in a single GPU, so the parallel process is
achieved using a very large hierarchical architecture.
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Fig. 4. CUDA Architecture*

CUDA is commonly used for graphical programming such as image and video
processing digitally like image segmentation, image quality changes, pattern
recognition can be applied to various needs in the real world [1].

The structure of the convolutional neural networks allows parallel programming
as described in section 4.1. Because of this feature, applications using CNN
algorithm can be done by parallel calculation in CUDA programming in
computers with NVIDIA supported GPU.

Some of the methods using the GPU platform are [2, 8, and 11]. Although these
studies are different in terms of methods and subjects, they are similar in terms of
using GPU to develop the methods they developed using the CNN algorithm.

5 Experimental Results and Discussions

5.1 Dataset

Data that used in this case is taken from google images, using batch image
downloader. We have 3 categories in this case, which is ayam geprek, ayam
goreng, and ayam bakar. So we download about 120 images per category where
300 images for training and 60 images to validating the models.

4 http://www.nvdia.com/object/cuda_home
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5.2 Models

In this research, we used 3 models of CNN algorithm, each of their parameters is
different so we can compare training time and validation accuracy to compare
between models. Then we find the best models from there.

Fig. 5. Training Dataset

Table 2: Model Comparison

Layer Model 1 Model 2 Model 3
Parameters Size [Activation |Parameters |Size |Activation|Parameters |Size |Activation

Convolution 64 Filter 4x4 |Relu 128 Filter 3x3 |RelLu 64 Filter 3x3 Relu
Convolution 32 Filter 3x3 |Relu 128 Filter 3x3 |RelLu 64 Filter 3x3 Relu
Pooling Average Pooling |4x4 [Relu Max Pooling |2x2 [Relu Max Pooling |2x2 Relu
Convolution 32 Filter 3x3 |Relu 64 Filter 3x3 |RelLu 128 Filter 3x3 Relu
Convolution 32 Filter 3x3 |Relu 64 Filter 3x3 |Relu 128 Filter 3x3 Relu
Convolution 32 Filter 3x3 |Relu 64 Filter 3x3 |Relu 128 Filter 3x3 Relu
Pooling Average Pooling |2x2 [Relu Max Pooling |2x2 [Relu Max Pooling |2x2 RelLu
Flatten Layer

Fully Conected | 256 Neuron Relu 256 Neuron Relu 512 Neuron Relu
Fully Conected | 256 Neuron Relu 256 Neuron Relu 512 Neuron Relu
Fully Conected |128 Neuron Relu 128 Neuron RelLu 256 Neuron Relu
Fully Conected |128 Neuron Relu 128 Neuron Relu 256 Neuron RelLu
Fully Conected |- - - 128 Neuron RelLu
Fully Conected |128 Neuron TanH 128 Neuron TanH 64 Neuron TanH
Output Layer |3 Neuron Softmax 3 Neuron Softmax |3 Neuron Softmax

On the first model, we use 5 convolution layer and 2 pooling layer which is using
average pooling and the size of the pool is 4x4 and 2x2. Then we use 5 fully
connected layers of the neural network and a single output layer with 3 nodes for
each category.
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Then on the second models, we use 5 convolution layer, but a number of the filter
is different from the first model, the number of second models is decreasing from
a high number of kernel filter to low number. Then the pooling layer that we use
in this second model is max pooling with a dimension of the pool is 2x2. Then we
use 5 fully connected layers of the neural network and a single output layer with 3
nodes for each category.

And then for the third models, we use 5 convolution layer too, but the number of
filter kernel is increasing between layer. Then the pooling layer that we use in this
third model is max pooling with a dimension of the pool is 2x2. Then we use 6
fully connected layers of the neural network and a single output layer with 3
nodes for each category.

5.3 Result

In this training process, we using 150 epoch, with 30 batch size and RMSPROP
(Root Mean Square Propagation) for gradient descent algorithm with default
parameters. So the hardware that we use in this training is GPU NVIDIA GTX
1060 3Gb GDDRS. The language that we use is R programing language with
Rstudio and the library is Keras with Tensorflow backend. So the training process
we can see in figure 6 below.

125-

data
&= fraining

—& validation

epoch

Fig. 6. Training Dataset for First Model

On the first model, we can see on the figure above. The model can predict better
and in training process, the first model reaches the highest accuracy in 93%. From
the graph, we can conclude the first models need more epoch to get the best
model. Then this training progress consumes about 1.9 minutes or around 115 sec.
Then for the second models, we can see on the figure below.
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Fig. 7. Training Dataset for the Second Model

On the figure above we can see on training process of second models. The models
can reach the highest accuracy at around 50 epoch. And the process of training
this model is about 4.41 minutes or around 265 seconds. Although the training
time is about 5 minutes to reach 150 epoch, the models reach optimum accuracy
at around 50 epoch. So we can say the second models are better than the first
model. Then for the third models, we can see on the figure below.
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Fig. 8. Training Dataset for Third Model

From the figure above we can see the training progress of the third model. This
model can reach an optimum point at around 50 epoch, which is same as the
second model, but the training process takes around 3.89 mins or 233 sec. From



Hafizhan Aliady et al. 12

this, we can say the third model is better than the second model. So we can say
from the 3 comparisons above, the third model is the best model because the third
model has high accuracy and faster than the second models.

Table 3: Accuracy and Processing Time

Model Accuracy Process Time(s)
(“o0)
15T Model 93 115
28D Model 99 265
3RD Model 99 233

From the Table 3 above we can see the accuracy degree and processing time from
each model, and then the best model is used to do the training model.

5.4 CPU versus GPU

After we get the best model from comparing 3 models above, then we compare
between training and testing process on both devices between CPU and GPU. We
compare the time that uses for each device to complete the training and testing
process.

Table 4: CPU versus GPU
CPU GPU

Training 354 13
Testing 1.9 0.09

At the training process, we decide to reduce the number of epoch because training
on CPU it takes too long if using 150 epochs, then we reduce the epoch to 10. We
can see in Table 4 above that training process on CPU it takes 354 seconds to
complete 10 epoch, and using GPU it takes only 13 seconds. This thing is caused
by a number of processing core on CPU and GPU are quietly different. CPU that
we use as processing device only has 4 cores. And GPU that use on this training
process has 1152 CUDA Cores. Therefore, the training process on GPU so much
faster than CPU. As well on the testing process, the processing time on 60 testing
data takes only 0.09 seconds on GPU dan 1.9 seconds on CPU.

6 Conclusion

Based on the research that has been done, we can conclude that best model that
can predict chicken dishes are the 3™ model. With 99% accuracy and the training
speed is 233 seconds. Then the comparison between CPU and GPU on training
and testing process on CPU it takes 354 seconds to complete 10 epoch and using
GPU it takes only 13 seconds. This thing is caused by a number of processing
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core on CPU and GPU are quietly different. CPU that we used as processing
device only has 4 cores. And GPU that use on this training process has 1152
CUDA Cores. Therefore, the training process on GPU so much faster than CPU.
As well on the testing process, the processing time on 60 testing data takes only
0.09 seconds on GPU dan 1.9 seconds on CPU.

ACKNOWLEDGMENTS
The authors would like to thank the Department of Statistics, Islamic University
of Indonesia (UII), for their support in data science research.

References

[1] Basuki, A. (2005). Pengolahan Citra Digital Menggunakan Visual Basic 6.
Yogyakarta: Graha IImu.

[2] Cengil, E, & COnar, A. (2016). Robust Face Detection with CNN. In
Proceedings of the 4nd ICAT International Conference on Advanced
Technology & Sciences (pp. 47-51). ICAT.

[3] Chellapilla, K., Puri, S., & Simard, P. Y. (2006) High-Performance
Convolutional Neural Networks for Document Processing. In Proc. of the
10th Int. Workshop on Frontiers in Handwriting Recognition.

[4] Danukusumo, K. P. (2017). Implementasi Deep Learning Menggunakan
Convolutional Neural Network untuk Klasifikasi Citra Candi Berbasis GPU
(Undergraduate mini-thesis, Universitas Atma Jaya).

[5] Goodfellow, et. al. (2016). Deep Learning.
http://www.deeplearningbook.org/.

[6] Krizhevsky, 1. Sutskever, & Hinton, G. E. (2012) ImageNet Classification
with Deep Convolutional Neural Networks. In Advances in Neural
Information Processing Systems (pp. 1907-1105).

[7] Lahabar, S., Agrawal, P., & Narayanan, P. J. (2008). High-Performance
Pattern Recognition on GPU. In Proc. of the National Conference on
Computer Vision, Pattern Recognition, Image Processing and Graphics (pp.
154-159).

[8] Li, H., Lin, Z., Shen, X., Brandt, J., & Hua, G. (2015). A Convolutional
Neural Network Cascade for Face Detection. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition (pp. 5325-5334).

[9] NVIDIA. (2009). NVIDIA CUDA-Programming Guide,
http://www.nvidia.com/object/cuda home.html.

[10]Rismiyati. (2016). Implementasi Convolution Neural Network Untuk Sortasi
Mutu Salak Ekspor Berbasis Citra Digital (Magister thesis, Universitas
Gadjah Mada).

[11]Wang, L., Lee, C., Y., Tu, Z., & Lazebnik, S. (2015). Training Deeper
Convolutional Networks with Deep Supervision. In arXivpreprint
arXiv:1505.02496.






