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Abstract 

 
With the advances in sensor technology, sensor nodes, the tiny yet 
powerful device are used to collect data from the various domain. As 
the sensor nodes communicate continuously from the target areas to 
base station, hundreds of thousands of data are collected to be used 
for the decision making. Unfortunately, the big amount of unlabeled 
data collected and stored at the base station. In most cases, data are 
not reliable due to several reasons. Therefore, this paper will use the 
unsupervised one-class SVM (OCSVM) to build the anomaly 
detection schemes for better decision making. Unsupervised 
OCSVM is preferable to be used in WSNs domain due to the one 
class of data training is used to build normal reference model. 
Furthermore, the dimension reduction is used to minimize the 
resources usage due to resource constraint incurred in WSNs 
domain. Therefore one of the OCSVM variants namely Centered 
Hyper-ellipsoidal Support Vector Machine (CESVM) is used as 
classifier while Candid-Covariance Free Incremental Principal 
Component Analysis (CCIPCA) algorithm is served as dimension 
reduction for proposed anomaly detection scheme. Environmental 
dataset collected from available WSNs data is used to evaluate the 
performance measures of the proposed scheme. As the results, the 
proposed scheme shows comparable results for all datasets in term 
of detection rate, detection accuracy and false alarm rate as 
compared with other related methods. 

     Keywords: Support Vector Machine, Unsupervised SVM, the Wireless Sensor 
Network, Dimension Reduction, Unlabeled Data. 
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1      Introduction  

Wireless Sensor Networks (WSNs) are formed by deployed a large number of 

sensor nodes in large areas to collect the desired data from the target phenomenal. 

WSNs have been used in many domains due to the tiny features of sensor nodes are 

favored to capture the needed data. For instance, the sensor deployed in 1) the 

mountain, dessert or urban area to collect the environmental data like ambient 

temperature, relative humidity, soil moisture, wind speed; 2) industrial and 

agricultural application for tracking and control purposed 3) military area or danger 

zone for alert system and monitoring purposed. Sensing unit, processing, unit, radio 

unit, and power unit are the basic unit equipped with sensor nodes as shown in 

Figure 1 while can be added to other unit depending on the requirement. 

Unfortunately, sensor node has limited resource constraint in term of energy, 

computation, and storage. Basically, wireless sensor data are communicated 

continuously via wireless channel followed the network architecture designed, 

based on flat or hierarchical network architecture. As sensor nodes are deployed in 

the critical area, in most situations, it will be utilized until the battery is depleted. 

 

Figure 1: Basic Component of Sensor Nodes [1] 

 

On the other hand, the raw data collected from the phenomenon are usually 

inaccurate and unreliable due to some reason. For instance, due to the nature of 

sensor node is tiny in size and limited resources in certain point sensor will fail to 

send data to the base station when energy is depleted. Moreover, as sensors are 

randomly deployed in the critical area, sensor nodes are prone to the malicious 

attack. Nevertheless, due to the unintended environment like the dynamic climate 

changing or harsh phenomenon in wildlife area sensor might be reported with 

unstable data. Therefore, to ensure the reliable and accurate data collected for 

decision making at the base station, anomaly detection is a possible solution to 
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detect anomalous or outlier from the raw data. Hodge and Austin, (2004) [1] have 

stated that outlier detection is the closest task to the initial motivation behind the 

data mining. 

Anomaly detection is the process to detect the data which significantly deviate 

from the rest of the normal data. Generally, anomaly detection model built the 

normal reference model using normal data which contrast to the misused detection 

that used both normal and anomalous data as a reference. By taking only normal 

data as references, thus anomaly detection is capable of detecting new types of 

security attacks or intrusions that emerge in the system [2]. Furthermore, sensor 

nodes may potentially collect anomalous data which come from the noise and error, 

actual event as well as a malicious attack. In the first case, the noise and erroneous 

data are needed to be eliminated, however, the other sources of anomalous data 

need to be carefully analyzed as it may give the meaningful results in the decision 

making at the base station. The generic framework of anomaly detection has been 

illustrated by [3] as shown in Figure 2. The generic anomaly detection illustrated in 

Figure 2 is composed of input, data processing, analysis and decision, and output 

derived from [2]. 

 

Figure 2. Generic framework of anomaly detection[3]. 

 On the other hand, there are lots of taxonomies of anomaly detection have been 

discussed for WSNs domain like in [2], [4], [5]. Figure 3 shows the taxonomy of 

anomaly detection in WSNs as reviewed in [4] and have categorized anomaly 

detection approach as Statistics-based, Nearest Neighbor-based, Clustering-based, 

Classification-based as well as Spectral Decomposition-based. Each of the 

categories has different algorithms to detect anomalous data measurements.  
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Figure 3: Taxonomy of Anomaly Detection in WSNs by [4] 

Based on Figure 3, classification-based generally comes from data mining and 

machine learning community. Generally, classification-based anomaly detection 

approach learns the normal features of data measurements which known as a 

training set to classify the new data measurement which known as a testing set as 

anomalous or normal instances. Support Vector Machine (SVM) which is one of 

classification-based technique has widely used in WSNs dataset included in [6]-[9]. 

One of the challenged faced by SVM-based anomaly detection is to obtain error-

free and labeled data for training [10]. Unfortunately, hundreds of thousand raw 

data collected from the sensor nodes are normally unlabeled. Furthermore, 

obtaining such clean and labeled data is often an expensive or manually intensive 

exercise [7]. The solution is to implement the unsupervised anomaly detection 

approach which suitable for unlabeled data collection. One-class SVM, on the other 

hand, learned the one-class normal data technique such as One-class Support Vector 

Machine (OCSVM) and Unsupervised Principle Component Analysis (UNPCA) 

has been widely used in the machine learning environment. Moreover, OCSVM has 

been widely studied to suit the sensor nodes limitation. 

As mention earlier, sensor nodes are limited to resources constraint, thus 

anomaly detection must be carefully modeled in order to minimize the energy and 

computational restriction. Therefore, dimension reduction approach can be 

considered to incorporate in the anomaly detection process to reduce the 

computational overhead as well as the data communication. There are many 

dimensions reduction techniques like Principal component analysis (PCA), 
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Discrete Wavelet Transform (DWT) and Deep Belief Network (DBN) have been 

proposed by hybridizing with anomaly detection for more resource minimization. 

In this paper, we implemented unsupervised anomaly detection with the 

dimension reduction technique for unlabeled WSNs data as well as to suit the 

resources constraints incurred in WSNs. The rest of the paper is organized as 

follows. The related work on the SVM-based anomaly detection and dimension 

reduction are discussed in Section 2. The methodology of anomaly detection 

technique is presented in section 3 including the dataset, data pre-processing and 

techniques used in the anomaly detection scheme. The experimental results and 

performance comparison with other algorithms are presented in section 4. Finally, 

our work of this paper is summarized in the last section.  

2     Related Work    

Classification-based anomaly detection technique for SVM-based classifier will be 

discussed in this section. Generally, classification-based anomaly detection is 

performed in two basic phases namely, namely training and testing phase. 

Compared to Bayesian-based classification-based techniques, SVM-based have 

much better generalization ability because they tend to minimize the separation 

between different classes by making used Mercer Kernels [11]. In the early version 

SVM technique introduces by Scholkopf et. al.,(2001)[12] the maximum margin 

hyperplane is used to separate the normal class from outlier classes. The data in 

input space are mapped to a high dimensional space called features space using 

Mercer Kernel to separate normal from anomalous as mention before. Again, as 

data are mapped to features space which minimized the computational overhead, 

thus SVM-based is preferable to be used in WSNs rather than Bayesian-based 

technique. SVM-based have also been classified based on the target class number 

included Multi-class SVM, Binary-class SVM and One-Class  SVM (OCSVM). In 

this paper, OCSVM will be used as classifier due to the nature of OCSVM used 

normal data to model anomaly detection. Moreover, as the absence of ground truth 

labeled data in WSNs dataset, thus OCSVM is suited for modeling the anomaly 

detection for WSNs dataset. OCSVM is classified as unsupervised classification 

technique as no prior labeled data are required to learn the normal model.  

 Shahid et. al. (2013)[11] have reviewed the various One-class SVM-based 

techniques formulations. The first variant of one-class SVM called hyperplane-

SVM have proposed by Scholkopf et. al.,(2001)[12]. In this variant hyperplane 

margin is used to separate the anomalous data from normal data measurement. 

Meanwhile, Hypersphere-SVM has been proposed by Tax and Duin (1999) [13] by 

calculating minimum radius as a decision boundary to identify anomalous data. 

Wang et al. (2006) [14] have modeled Hyper-Ellipsoidal (TOCC) to separate the 

normal and anomalous data based on minimum effective radii as a decision 

boundary. Both formulations are differentiated based on their shape of decision 

boundary which is spherical and ellipse shape respectively. Due to the quadratic 



 

 

 

 

177                                             Unsupervised Anomaly Detection for Unlabeled  

optimization used to calculate the decision boundary for both techniques incurred 

computational complexity. Therefore, the other researcher has proposed linear 

optimization to mitigate the computational overhead. Laskov et al. (2004) [15] have 

made an alteration in calculating the decision boundary by adopting linear 

optimization to proposed quarter-sphere based one-class SVM (QSSVM). On the 

other hand, Centered Hyperellipsoidal Support Vector Machine (CESVM) based 

anomaly detection has been proposed by Rajasegarar et al. (2008) [16] by 

combining the idea of linear optimization in QSSVM with the Hyper-Ellipsoidal-

SVM. As reported in [11] the classification performance and generalization ability 

of one-class formulations can be arranged in the following increasing order: 

hyperplane < hypersphere ≈ quarter-sphere < hyperelliptic ≈ centered ellipsoid. The 

formulation of OCSVM variants is presented in [11]. 

 In WSNs anomaly detection domains, SVM techniques have been used as a 

classifier in various anomaly detection schemes. Takianngam and Usaha(2011) [17] 

used Quarter-Sphere OCSVM as a classifier to detect anomalous data 

measurements while incorporating Discrete Wavelet Transform (DWT) as data 

compression for data pre-processing. Researcher in [7], [16], [18] have used 

Centered Hyperspherical One-Class SVM  and Hyperellipsoidal One-Class SVM 

and Quarter-Sphere SVM algorithm to perform anomaly detection in WSNs data. 

Meanwhile, Researcher in [19] used Quarter-Sphere SVM to proposed Spatio-

Temporal-Attribute Quarter-sphere SVM (STA-QS-SVM) formulation by 

considering attribute correlations between the sensor nodes to model their anomaly 

detection schemes. Meanwhile, research in [20] has proposed two unsupervised 

methods to estimating the optimal setting for hyper-plane based One-Class Support 

Vector Machine (OCSVM) and Hypersphere-SVM faster parameter estimation. In 

other domain, researchers in [21], one-class SVM have been combined with deep 

belief networks (DBNs) which DBNs is used to extract the features from the input 

data. 

3     Research Methodologies 

The flow chart of the research methodologies is depicted in Figure 4 below is 

applied to this research paper. As compared to generic anomaly detection presented 

in Figure 2, the component of dimension reduction is added in the component to 

reduce the data dimension. Thus result reduces the detection efficiency in term of 

memory and energy usage. Meanwhile, the procedure to identify the normal profile 

(normal reference model) is performed using CESVM classifier based on 

unsupervised anomaly detection scheme. The testing data instances are then can be 

classified as anomalous or normal data based on the established normal reference 

model. In CESVM classifier for anomaly detection scheme phase, analysis and 

decision making is taking place which corresponds to analysis and decision, and 

output components in Figure 2. The detail of each component will be elaborated in 

each sub-section. 
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Figure 4: Flowchart of Proposed Methodology using OCSVM Classifier and 

CCIPCA Dimension Reduction algorithm. 

 

3.1      Data Collection 

Data collection phase is the equivalent to the input component from Figure 2 which 

represent the dataset collected from the sensor nodes. The environmental datasets 

are extracted from Intel Berkeley Research Laboratory (IBRL), Lausanne Urban 

Canopy Experiment (LUCE), PDG and Networked Aquatic Microbial Observing 

System (NAMOS) which widely used in anomaly detection schemes to detect 

anomalies in WSNs data. In the experiment, both IBRL, LUCE and NAMOS 

datasets will be tested on univariate dataset while PDG dataset will be tested on 

multivariate data. Temperature and the ambient temperature is selected from IBRL 

and LUCE data sample respectively. Two variables are used in SensorScope PDG 

2008, which is ambient and surface temperature is selected from the sensor in 

station pdg2008-metro-1. Lastly, one variable which is Chlorophyll concentration 

is extracted from NAMOS dataset located at buoy no. 103. 

3.2      Data Pre-processing 

In data pre-processing, histogram-based data labeling will be used to label the 

normal and anomalous data using visual inspection. This data labeling has been 

used in [8], [17], [22] to evaluate the effectiveness of their proposed detection 

schemes. From histogram plot observation, the normality region is obtained to label 

the collected sensor data. Moreover, the patterns of anomalies are found from the 

Data Collection 

Data Pre-processing 

Dimension Reduction based 

on CCIPCA 

Performance Measure 

CESVM Classifier for Anomaly 

Detection Scheme 
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observation as stated in [8]. The normality region for all the datasets are presented 

in Table 1.  

 

Table 1: Normality regions for histogram-based datasets [17] 

Dataset Normal region lower bound Normal region upper bound 

IBRL 16 30 

LUCE 1.5 9 

PDG (ambient temp.) 4 -12 

PDG (surface temp.) 4 -14 

NAMOS 0 500 

 

Meanwhile the histogram plots for all datasets are shown in Figure 5(a)-(d). The 

green and red dash line indicates the maximum and minimum normality region 

respectively. 

 

 
(a) IBRL Dataset 

 

Figure 5. Histogram for (a) IBRL, (b) LUCE, (c) PDG and (d) NAMOS Dataset 

 

 
(b)LUCE Dataset 
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(c) PDG Dataset 

 
(d) NAMOS Dataset 

 

Figure 5. Histogram for (a) IBRL, (b) LUCE, (c) PDG and (d) NAMOS 

Dataset(cont.) 

From the histogram plot, short anomalies have been observed in IBRL dataset. The 

sharp and short plot are spotted around epoch 1 and 2500 which the reading reported 

are more than the normality region as stated in Table 1. Anomalous data reported 

in LUCE dataset can be categorized into noise and short anomalies as there is 

increasing the value of the variance of sensed data and some sharp plot are also 

presented in Figure 5(b). The data measurements also show there are some data 

plotted over maximum and below the minimum normality region. The same noise 

pattern is also observed in PDG dataset which the inconsistent shape presented in 

the histogram plot. As the dataset is using multivariate features, two minimum 

normality regions are marked in the histogram plot. The last dataset, on the other 

hand, presented the constant plot at the last 9000 epochs which indicated the 

presence of constant anomalies. The value reported is also above the maximum 

normality region which is labeled as anomalous data.  
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3.3      Dimension Reduction based on Candid-Covariance free 
Incremental Principal Component Analysis (CCIPCA) 

As explained before, this paper will use dimension reduction to minimize the 

resource constraint incurred in sensor nodes. CCIPCA which have successfully 

used dimension reduction in anomaly detection scheme proposed by [23] will be 

used in this paper. Weng et. al.,(2003) [24] proposed CCIPCA to reduce the 

computational complexity of the original PCA. The pseudocode for CCIPCA is 

shown in Figure 6. 

 
Algorithm: CCIPCA 

1 Input: 𝑆𝑚×𝑛 = [𝑠(1), 𝑠(2), … 𝑠(𝑚)] 
2 Output: 𝑉, 𝐷 //equivalent to Λ, 𝑃 

3 For m=1,2,..,m, do the following steps 

4       𝑠1(𝑚) ←  𝑠(𝑚) 

5 
 For 𝑖 = 1,2. . , min{𝑘, 𝑚} do// 𝑘 is first dominant 

𝑉 

6 

     If i= 𝑚 do 

       Initialize the 𝑖𝑡ℎ eigenvector      as 𝑓𝑖(𝑚) =
𝑠𝑖(𝑚) 

7       Else do 

8 
         𝑓𝑖(𝑚) =  

𝑚−1−𝑙

𝑚
 𝑓𝑖(𝑚 − 1) +

                             
1+𝑙

𝑚
𝑠𝑖(𝑚)𝑠𝑖

𝑇(𝑚)
𝑓𝑖(𝑚−1)

‖𝑓𝑖(𝑚−1)‖
; 𝑚 > 0 

9        End if 

10    End For 

11 

For 𝑖 = 1,2. . , min{𝑘, 𝑚} do 

   𝑓𝑖 =  
𝑓𝑖(𝑚)

‖𝑓𝑖(𝑚)‖
; 𝜆𝑖 = ‖𝑓𝑖(𝑚)‖ 

// 𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒 𝑓𝑖 𝑡𝑜 𝑔𝑒𝑡 𝑡ℎ𝑒 𝑉, 𝐷 

12 End For 

 

Figure 6. The algorithm of CCIPCA proposed in Weng et. al.,(2003)[24] 

 

Basically, CCIPCA can be used either in a batch or incremental learning mode. For 

batch modes, principal component is generated using data collected in a specific 

period of time. Meanwhile, in incremental mode, the principal components are 

updated for each of data observation.  

3.4      CESVM Classifier for Anomaly Detection scheme 

CESVM will be used in this paper, to model the anomaly detection scheme for 

detecting anomalous data instance from WSNs data. This is due to the ability of 

ellipsoidal-based SVM techniques to capture multivariate data as well as the 

significant reduction of computational complexity compared to hyper-ellipsoidal 

by using linear optimization problem for decision boundary calculation. CESVM 

aims to place the majority of the of image vector within the minimum effective radii 

and centered at the origin in the feature space. 
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 Firstly, consider 𝑋 = {𝜙(𝑥𝑖 ) ∶ 𝑖 = 1, … , 𝑛}  as the dataset with 𝑑  variate 

data vectors in the input space, 𝑥𝑖 ∶ 𝑖 = (𝑥1, 𝑥2, … , 𝑥𝑑), 𝑖 = 1,2, … 𝑛  and 𝑛 is the 

number of data vectors. Then in features space, the input vector are mapped into 

image vector 𝑋 = {𝜙(𝑥𝑖 ) ∶ 𝑖 = 1, … , 𝑛}  using non-linear function  𝜙(. )  and 

produce 𝜙(. ) ∶ ℜ𝑑  →  ℜ𝑝 . The optimization problem is calculated based from 

[14] as shown in Equation (1). 

min
R ∈R,ξϵ R

  R2 + 
1

vm
∑ ξi

m
i=1     (1) 

s.t:  (𝑥𝑖 )Σ−1𝜙(𝑥𝑖 )
𝑇  ≤  𝑅2 + 𝜉𝑖, 𝜉𝑖 ≥ 0, 𝑖 = 1,2, … 𝑚 

 

CESVM is then transformed to the linear optimization problem formulated 

based on equation (1) as shown in equation (2). 

min
𝛼 ∈ℜ

− ∑ 𝛼𝑖
𝑚
𝑖=1  ‖√𝑚 Λ−1𝑃𝑇𝐾𝑐

𝑖‖2              (2) 

 s.t: ∑ 𝛼𝑖=1𝑚
𝑖=1 , 0 ≤  𝛼𝑖 ≤

1

𝑣𝑚
, 𝑖 = 1,2, … 𝑚     

Calculation of centered kernel matrix,  𝐾𝑐  obtained from kernel matrix,𝐾  is 

equal to 𝐾𝑐 = K −  1𝑚K − K 1𝑚 +  1𝑚K 1𝑚 where 1𝑚  is the 𝑚 × 𝑚  matrix and 

all value equal to 
1

𝑚
.  In OCSVM, Mercer Kernel is used to computation the dot 

product of image vector in the features space which can be computed in input space. 

The linear optimization technique such as simplex or interior point method can be 

used to obtained the value of 𝛼𝑖. This 𝛼𝑖 value is used to classify the data vector as 

1) 𝛼𝑖 =  0 data vector is classify as normal data; 2)  𝛼𝑖 > 0 data vector is classify 

as support vector and 3) 𝛼𝑖 = 
1

𝑣𝑚
 data vector is classify as border support vector. 

Finally, effective radii, R are computed using any border support vector as in 

equation (3).  

𝑅 =   ‖√𝑚 Λ−1𝑃𝑇𝐾𝑐
𝑏‖      (3) 

Lastly, the decision function used to classify the new data measurement is 

calculated by equation (4). Table 1 shows the explanation for notation used in 
equation (1) - (3). 

𝑓(𝑥) = 𝑠𝑔𝑛(𝑅2 −  ‖√𝑚 Λ−1𝑃𝑇𝐾𝑐
𝑖‖

2
     (4) 

Table 2 shows the explanation for notation used in equation (1) - (3). 

 

Table 2:  Explanation of Notation used in equation (1) - (3). 

Notation Explanation 

𝑚, 𝑛 Size of input data input data 

𝜙(. ) non-linear function 

𝑝 The dimension of features space 
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𝑣 Regularization parameter 

Σ−1 The inverse of the covariance matrix 

𝛼𝑖 Lagrange multipliers 

𝑃 Positive eigenvector matrix 

Λ Positive diagonal eigenvalue 

𝐾 Kernel Matrix 

𝐾𝑐
𝑖 Centered Kernel Matrix 

𝑅 Effective Radii 
 

3.5      Performance Measure 

The common evaluation metric used to measure the effectiveness of anomaly 

detection performance are detection rate, detection accuracy and false alarm rate 

which calculated as Equation (5)-(8). 

Detection Rate (DR) = 𝑇𝑁

𝐹𝑁 + 𝑇𝑁
 

(5) 

Accuracy = 𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁 + 𝑇𝑁
 

(6) 

False Positive Rate (FPR) = 𝐹𝑃

𝑇𝑃 + 𝐹𝑃
 

(7) 

False Negative Rate (FNR) = 𝐹𝑁

𝐹𝑁 + 𝑇𝑁
 

(8) 

The result of performance measure will be reported in term of percentage. The 

best detection rate and accuracy when results are reported 100% reading while the 

false alarm rate (FPR and FNR) shows the best results when 0% are reported. 

4     Experimental Results 

The effectiveness performance result of the WSNs dataset included IBRL, LUCE, 

PDG, and NAMOS above are discussed in this section. Datasets included mixed of 

univariate and multivariate datasets with a different type of anomalies will be 

discussed based on the performance measure discussed in the previous section. The 

linear kernel presented as 𝑘𝑙𝑖𝑛𝑒𝑎𝑟 =  𝑥1. 𝑥2 is used in the experiments as follow the 

experiment setup in [17]. Meanwhile the 𝑣 value varied from each dataset since 

each dataset reporting different the value of outliers. This is due the 𝑣 represents 

the maximum outlier can be in the dataset. The results reported are taken from 𝑣 

which gave the best performance measure for all the datasets.  
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4.1      The result of Dataset IBRL 

In IBRL dataset, two scenarios are examined for effectiveness performance as 

stated in section 4.5. Temperature is selected as a variable in two scenarios. In 

scenario 1, 1000 data instances are used to build normal reference model and 2000 

instances are used in scenario 2 to build normal reference model using CESVM 

technique. These two scenarios are chosen as based on histogram plot in Figure 5(a), 

the short anomalies are exhibited in the first 1000 data the data instance while the 

next 1000 data instances are free from anomalous data. 

 

Table 3. Effectiveness Results for IBRL Dataset with Different Scenario 

Scenario 
Training Set Size  

and Position 
DR (%) ACC (%) FPR (%) FNR (%) 

1 1-1000 (1000) 100 99.8 0.02 0.02 

2 1-2000 (2000) 100 98.4 1.6 0 

 

Both scenarios reported 100% detection rate that indicates the proposed 

scheme can clearly detect anomalous data as shown in Figure 5. Since short 

anomalies are reported in IBRL which is represented by the sudden sharp changes 

around epoch 1, therefore, anomalous data can be detected easily. However, the 

false alarm rate is reported to be more than 0% for both scenarios. This shows that 

the training set does not well represent the current data situations. Therefore, as the 

false alarm increases, the detection accuracy is decreased. 

4.2      The result of Dataset LUCE 

As same as IBRL dataset, the LUCE dataset is examined using univariate data by 

selecting ambient temperature as variable. The performance of LUCE dataset also 

tested in two scenarios. The first scenario, 1000 data instances are selected to use 

as a training set, meanwhile, 4000 instances are selected for scenario 2. The results 

of the detection effectiveness are shown in Table 4. 

Table 4. Effectiveness Results for LUCE Dataset with Different Scenario 

Scenario 
Training Set Size 

 and Position 
DR (%) ACC (%) FPR (%) FNR (%) 

1 1-1000 (1000) 100 98.0 2.0 0 

2 1-4000 (4000) 100 98.0 2.0 0 

 

Based on Table 4, 100% detection rate is reported for both scenarios which 

indicated the proposed scheme can clearly detect anomalous data. Since short and 

noise anomalies are reported in LUCE dataset, the anomalous data are more 

difficult to differentiated compared to the previous dataset. Therefore, the false 

positive rate is reported to be more than 0% for both scenarios. This result indicate 
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that some normal data is classified as an anomalous data instance. This shows that 

the training set does not well represent the current data situations. Therefore, as the 

false alarm increases while the detection accuracy is decreased.  

4.3      The result of Dataset PDG 

The multivariate dataset is presented in PDG dataset by using two variables. 

Ambient and surface temperature variables are selected to evaluate the 

effectiveness performance. In scenario 1 and scenario 2, 700 and 2000 data 

instances are used respectively as training set and to build normal reference model.  

 

Table 5. Effectiveness Results for PDG Dataset with Different Scenario 

Scenario 
Training Set Size 

 and Position 
DR (%) ACC (%) FPR (%) FNR (%) 

1 701-1400 (700) 100 81.6 32.7 0 

2 1667-3666 (2000) 99.4 75.6 29.3 0.01 

 

For PDG dataset, Scenario 1 presented 100% detection rate which as same as 

previous datasets. Meanwhile, 99.4% of detection rate the second scenario. Low 

detection accuracy is reported as reflected by the high false positive rate in both 

scenarios. This is due to PDG dataset is tested with multivariate data as well as the 

noise anomalies is reported in PDG. Noise anomalies represent the increases in 

value in the dataset shows fluctuating value in the histogram. However, the false 

negative rate shows a good result for both scenarios which is 0% and 0.01% for 

scenario 1 and scenario 2 respectively. This indicated the classifier successfully 

differentiates the anomalous from the normal data instances.  

4.4      The result of Dataset NAMOS 

The last dataset used chlorophyll concentration from NAMOS dataset and tested 

and evaluated in two scenarios as shown in Table 6. From the histogram plot in 

Figure 1(d), constant anomalies are demonstrated in NAMOS dataset where a long 

period of anomalies shown around epochs 9001. 

 

Table 6. Effectiveness Results for NAMOS Dataset with Different Scenario 

Scenario 
Training Set Size 

 and Position 
DR (%) ACC (%) FPR (%) FNR (%) 

1 1-3000(3000) 100 100 0 0 

2 3001-6000 (3000) 100 99.9 0 0.001 
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NAMOS dataset demonstrates good results for all performance measures in 

both scenarios as compared to previous datasets. Furthermore, the false negative 

rate is 0.001% which affected the detection accuracy in scenario 2. However, the 

result is better than PDG dataset. This is due to that PDG dataset is tested with 

multivariate variables while in NAMOS dataset is tested using a univariate variable. 

Moreover, the constant anomalies reported in the dataset make the classifier easier 

to distinguish the normal and anomalous data. 

As the research is using the same histogram-based data samples, the results 

using CESVM classifier with CCIPCA dimension reduction (CESVM+CCIPCA) 

is then compared with other PCCAD [8], DWT+SOM [22] and DWT+OCSVM 

[17] anomaly detection schemes using WSNs datasets. Table 7 presented the 

effectiveness performance measured with other schemes and the graphical result is 

presented in Figure 7 (a) – (d). 

 

 

 

 

 

 

 

 

 

 

Table 7. The Comparison of Effectiveness Evaluation with Other Related 

Anomaly Detection Schemes Using Histogram-Based Labelling 

Dataset Model DR ACC FPR FNR 

IBRL DWT+OCSVM 100 98.3 1.9 0 

DWT+SOM 100 99 1.09 0 

PCCAD 100 99.7 0.3 0 

CESVM+CCIPCA 100 98.4 1.6 0 

LUCE DWT+OCSVM 100 98.3 1.9 0 

DWT+SOM 100 99 1.09 0 

PCCAD 100 99.9 0.09 0 

CESVM+CCIPCA 100 98 2 0 

PDG DWT+OCSVM 99.7 97.6 2.6 0.3 

DWT+SOM 83 97.8 0.5 16.5 

PCCAD 97.9 96.7 3.5 2.1 
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CESVM+CCIPCA 99.1 78.6 25.8 0.01 

NAMOS DWT+OCSVM 100 88.6 12.8 0 

DWT+SOM 100 99.4 0.5 0 

PCCAD 100 90.2 11.5 0 

CESVM+CCIPCA 100 100 0 0 

 

 From Table 7 and Figure 7, the experiments using CESVM + CCIPCA 

demonstrated comparable performance measure results for all the anomaly 

detection schemes using the same WSNs datasets. In terms of detection rate and 

false negative rate, CESVM+CCIPCA shows almost the higher detection value and 

lower false negative rate. Meanwhile, detection accuracy shows the lowest value in 

PDG dataset which reflecting the high false positive results. The detection accuracy 

and false negative rate show the comparable result in IBRL and LUCE datasets, 

especially with the DWT+OCSVM anomaly detection scheme due to the SVM-

based classifier used for both schemes. Overall the CESVM+CCIPCA schemes 

show the best detection accuracy and with the lower false negative rate for NAMOS 

datasets compared to all schemes.  
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(c) PDG Dataset 

 

 (d) NAMOS Dataset 

Figure 7: Effectiveness Evaluation with Other Related Anomaly Detection 

Schemes Using Histogram-Based Labelling 

5     Conclusion 

In this paper, unsupervised classification-based anomaly detection scheme based 

on OCSVM is used to evaluate the effectiveness performance in term of detection 

rate, detection accuracy, false positive rate and false negative rate. Unsupervised 

OCSVM is suggested to be used in anomaly detection schemes in WSNs data as 

the absence of ground truth labeling data collected from the sensor nodes. To reduce 

the recourse constraint incurred in sensor nodes, one PCA variant known as 

CCIPCA dimension reduction is used to minimize the computational complexity of 

the CESVM classifier. Meanwhile, histogram-based data labeling technique is used 

to label the dataset to use as the training set.  Environmental sensor dataset collected 

from IBRL, LUCE, PDG, and NAMOS are used in the experiments and the 

effectiveness performance is compared with the anomaly detection schemes that 

incorporated dimension reduction technique. The results show the 

CESVM+CCIPCA anomaly detection scheme is comparable in most of the WSNs 

dataset in term of performance measured mentioned above. 
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