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Abstract 

     In this work, we propose a robust Mahalanobis one class 
classifier with Fast Minimum Covariance Determinant estimator 
(MC-FMCD) for species independent timber defect detection. 
Having known in timber inspection research that there is a lack of 
defect samples compared to defect-free samples (imbalanced data), 
this unsupervised approach applies outlier detection concept with no 
training samples required. We employ a non-segmenting approach 
where a timber image will be divided into non-overlapping local 
regions and the statistical texture features will then be extracted 
from each of the region. The defect detection works by calculating 
the Mahalanobis distance (MD) between the features and the 
distribution average estimate. The distance distribution is 
approximated using chi-square distribution to determine outlier 
(defects). The approach is further improved by proposing a robust 
distribution estimator derived from FMCD algorithm which 
enhances the defect detection performance. The MC-FMCD is found 
to perform well in detecting various types of defects across various 
defect ratios and over multiple timber species. However, blue stain 
evidently shows poor performance consistently across all timber 
species. Moreover, the MC-FMCD performs significantly better than 
the classical MD which confirms that using the robust estimator 
clearly improved the timber defect detection over using the 
conventional mean as the average estimator. 
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1      Introduction 

Automated inspection of timber defect has shown to be of great importance in the 

wood industry. Due to the decreasing forest resources and increasing cost of 

timber, the application of automated vision inspection is seen as a solution to 

optimise resources and save production cost, while maintaining the output of 

products with reliable quality. According to Kline [1], automated timber 

inspection was found to be more accurate and consistent than manual inspection. 

Conventional inspection process is seen as not to be efficient enough in 

optimizing timber resources, thus, the timber industries must innovate to survive 

in the competitive market [1]. 

A study has shown that human error in timber inspection resulted in 22% rejected 

parts which reduced the overall yield from 63.5% to 47.4% [2]. Similarly, Huber 

[3] claimed that the performance of human operators in locating and identifying 

surface defects is only about 68%. They highlighted that by applying automated 

inspection process, an improved yield could be obtained because obviously 

machine could not be affected by human weakness factors such as tiredness, 

boredom and inconsistencies. Kim and Koivo [4] also agreed that automated 

inspection could overcome the problem of suboptimal and inconsistencies of 

human operators judgement due to variability of defect characteristics itself. 

Buehlmann and Thomas [5] further concluded that improvement in 25% detection 

accuracy could increase yield by 5.3%, which could contribute to significant cost 

saving for an average sized rough mill. Since many research found that automated 

vision inspection is more effective than human operators, it is pertinent to apply it 

in timber industry to increase timber yield and improve the production quality. 

Various classification method has been proposed for automatic timber defect 

detection as discussed in [6]. Despite having varied classification performance, it 

is very difficult to compare between studies because obviously each study has 

employed different image acquisition setting, species, types of defects and even if 

a similar set of features were used, the extraction parameters were dissimilar to 

each other. However, it is worth to note that most classifiers used were supervised 

classifiers  [7–11] and only a few applied unsupervised methods [12–14]. This is 

due to the limitation of unsupervised classification in identifying defects type 

despite having good detection performance.  

Although, supervised classifiers were commonly used, in reality, samples of 

various defects are not easy to collect. Different timber species have different 

types of common defects. While some defect types are common and more 

prominent in one species, they might be rare to others. That is why in most 
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previous studies the samples used are limited to only one type of species 

[9,11,15]. It will be difficult to bring the outcome of a particular research to the 

industry if the model trained is tuned to fit only one type of species, when in 

reality, timber industries process multiple species at a time. However, there are 

some efforts reported using multiple species [7,8] but their works were confined 

to supervised method requiring sufficient samples. 

2      Problem Background 

Distribution of samples in timber inspection studies is often imbalanced. This is 

due to the fact that some defect types are scarce on certain timber species while 

being common to others. Previous studies on timber defect detection have mostly 

focused on samples from single timber species and supervised learning method. 

This is understandable, since it is difficult to obtain sufficient samples 

representing all types of defects for all kinds of timber species. The easiest 

workaround back then was to experiment on all types of defects focusing on a 

single species or experiment on a single type of defect only. Furthermore, the 

choice of supervised learning often demonstrates good performance when the 

training and testing data are well sampled. Nonetheless, in this way, it seems 

unfeasible to bring the research outcome to the industry where multiple timber 

species are being processed in daily production. We could not expect the industry 

to re-train their model for every timber species, let alone finding samples of all 

defect types for that particular species.  

Additionally, non-defect samples have varied appearance in grain and colour over 

different species. However, it is known that defect characteristics are almost 

similar across species. Therefore, this enables us to draw a certain insight towards 

finding appropriate classification method which could cater to the incompleteness 

or unavailability of defect samples, moving away from the supervised learning 

approach. In this light, we propose a timber defect detection approach based on 

the concept of outlier detection, where defects will be detected or classified as the 

timber being scanned under the visual inspection system regardless of timber 

species. In this concept, defects will be treated as outlier and clear-wood as 

representative of the sample distribution. This concept is notable and considered 

to be a promising approach in visual inspection where defect samples are 

unavailable [16]. However, in the case where sufficient prior knowledge is 

available, supervised classification is still recommended as it often provides good 

performance [16]. 

In our work, we define the incompleteness of defect samples as an imbalanced 

data problem.  Sun et al.[17] discussed the research solutions for this kind of 

problem by suggesting two approaches which are data level approach and 

algorithm level approach as depicted in Fig. 1 . In connection to our solution 

concept which is based on outlier detection, we foresee the algorithm level 

approach, specifically targeting one class learning as a prospective solution. While 
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the approach of one class learning is thought to be effective in a certain context 

depending on the problem domain, extensive knowledge about the learning 

algorithm and problem domain is needed as the algorithm will be modified 

according to the problem concerned [17]. The one class learning approach is very 

suitable for problems that require samples from only one class (clear-wood class), 

hence, practical in defect detection as in outlier detection concept. Due to the 

nature of timber defect detection problem, using one class learning, with clear-

wood samples treated as representative of the distribution seems worth to be 

investigated. 

 

 

Fig.1: Research solutions to the problem of classification of imbalanced data 

[17] 

3      Method 

3.1 Distance-based one class classifier (OCC) 

 The problem of one class classification (OCC) has been implemented in many 

applications such as automated vision inspection, medical diagnostics, anomalies 

detection, network intrusion detection and fault detection. The strategy is to 

represent training samples such that similar samples are accepted and outliers are 
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rejected. This is one of the algorithm-level approaches in handling imbalanced 

data where defect samples are scarce and limited in availability [17]. This is often 

due to the lack of occurrence for the defect cases and difficulties in getting the 

samples. The difficulties in certain domain could be caused by higher cost, 

unavailability and also risk in acquiring the samples. In this case, defect samples 

discriminating the outlier from the target class is difficult to be defined. Therefore, 

OCC aims to represent the normal cases with a domain descriptor so that it would 

be able to detect abnormality and reject outliers by means of proximity function. 

In timber defect detection, the classifier’s task is to identify and assign normal or 

defect label to the input image. In contrast to supervised classification, it only 

needs clear wood samples for training, using a distance-based measure and a 

predefined threshold for classification. There are several types of OCC [18]: 

 Based on neighbourhood: A domain descriptor can be built using the 

neighbourhood relations to some representation objects. Such objects are 

chosen as the ones which have relatively many close (as judged by 

dissimilarities) neighbours. 

 Based on proximity to distribution average estimate: One of the simplest 

ways to describe a class relies on the proximity to the average 

representative. If samples are described as vectors in a feature space, then 

the mean vector plays the role of average representative. To identify 

multivariate outlier, distance from each sample and distribution’s average 

is calculated. An outlier will be detected as a point having distance larger 

than a pre-set cut-off. 

 Based on dissimilarity space (boundary): A dissimilarity space is defined 

by a space which contains samples from the class of interest. Samples are 

considered outliers if they are larger than the predefined dissimilarity 

measures. If the dissimilarity measure is a metric, then all samples are 

contained in a prism, bounded from below by a hyper plane and bounded 

from above by the largest dissimilarities. 

 Based on probability distribution function: Probabilistic approach utilises 

the kernel function to estimate general distribution of samples, establishing 

decision boundaries (determined by the probability distribution) and 

rejecting samples lying in the regions of low density by examining data 

likelihood. 

Pekalska [18] claimed that OCC based on average estimate works better in 

general and has the ability to offer sparse solution while maintaining good 

generalization ability (depending on the problem domain). In the case of timber 

defect detection, ratio of defects could vary between 5 to 25 percent for each piece 

of timber fed into the machine, hence the need for a generalized domain descriptor 

for the detection process. For that reason, we will focus on OCC based on 

distribution average estimate. 
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Similarity or distance measures play an important role as proximity function in 

OCC based on distribution average estimate. Choosing a distance metric is highly 

problem dependent and will determine the success or failure of the proposed 

learning approach [19]. There are two types of distance measures, namely metric 

and non-metric distance.  Metric distance is based on Euclidean distance where 

data measured must be standardized to a similar scale as to obey the rules of 

triangular inequality. It assumes that each feature is independent from others and 

equally important [19]. However, in real multi-dimensional problem, similarity 

judgement is based on different weight for different dimension.  

-In our study, the measurement of the proposed statistical texture features is of 

different scaling, hence, different weight for every feature. Furthermore, metric 

distance was claimed to be not effective for multivariate outlier detection as the 

distance between samples in high dimensional space is so similar that none of the 

samples can be treated as outlier [20]. Kou [20] further concluded that non-metric 

distance has many advantages over metric distance in handling multivariate data. 

For example, metric distance treats each feature as equally important, while non-

metric distance such as Mahalanobis distance will automatically account for the 

scaling of unstandardized data [20]. Weinshall et al. [21] also emphasized that 

outlier detection method must implement non-metric distance that violates the 

triangle inequality. Pekalska et al. [22] further agreed that non-metric distance is 

more useful and informative in statistical learning involving multidimensional 

data.  

 

Therefore, for our work, we will employ a non-metric distance which is based on 

Mahalanobis formulation. Mahalanobis distance was introduced by Mahalanobis 

[23] and since then has been used in many domains including on outlier detection 

problem [24]. Mahalanobis distance is a scale-invariant distance measure between 

two data points in a multi-dimensional space. Since it is a non-metric distance, it 

accounts for unequal variances as well as correlations between features [19,24]. 

Therefore it is an appropriate distance measure when it comes to handling 

multiple features of unequal scale. Mahalanobis-based classifier falls under the 

category of distance-based non-parametric classifiers. It is under the same group 

as template matching and k-nearest neighbour classifier, where there is no 

assumption of model. This is contrasting to parametric or semi-parametric 

classifiers such as artificial neural network, support vector machine and linear 

discriminant analysis, where data is assumed to be represented by a distribution 

model. Mahalanobis distance can be defined as follows: 

Mahalanobis Distance, D(x) =  (1) 

 

Where,  

x = is a data point in multidimensional feature space 
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μ = mean vector of the feature space distribution 

Σ = covariance of the feature space distribution 

 

In our case, as a sample image is scanned, the image will be subdivided into non-

overlapping rectangular sub-images. Feature space distribution is generated from 

texture features extracted over all sub-images of a sample image. When applied to 

timber defect detection, an underlying assumption is that the mean vector 

represents optimal defect-free condition. This is based on the fact that defect area 

is approximately ranging from 5 to 25 percent for each piece of timber. Distance 

between all sub-images and distribution centroid will be calculated using Eq. 1. 

Distance space calculated using Mahalanobis distance can be approximated 

following a chi-square distribution  where p is the number of features or 

dimensions [25]. Therefore, finding multivariate outlier in Mahalanobis distance 

space can be done by setting a cut-off value to a corresponding chi-square 

distribution χ2 , for example 98% quantile, subsequently treating the points with 

distance larger than the cut-off value  as defect.  

 

However, using mean as multivariate distribution estimator has several 

disadvantages and it was claimed as a non-reliable measure for outlier detection 

[25] . Mean value is considered to be sensitive to extreme data deviating from the 

main distribution [25]. Furthermore, classical mean as estimator is subject to the 

problems of masking (false positive) and swamping (false negative) where 

outliers do not necessarily show large distance [26]. Hardin and Rocke [27] 

suggested that these problems could be overcome by using robust estimates which 

are less affected by outliers. Therefore, Mahalanobis distances need to be 

calculated from robust distribution estimate in order to provide reliable measures 

for defect (outlier) detection. Many robust estimators have been introduced in the 

literature. According to Filzmoser [25], the minimum covariance determinant 

(MCD) estimator is most frequently practiced, for having a computationally fast 

algorithm. The next section will explain the Fast Minimum Covariance 

Determinant algorithm in producing robust estimator of multivariate location. We 

consider the FMCD algorithm as an extension or improvement over the proposed 

Mahalanobis distance based classifier in increasing the detection accuracy of our 

timber defect detection problem. 
 

3.2 Fast minimum covariance determinant as robust estimator 

The minimum covariance determinant (MCD) method is originally introduced by 

Rousseeuw and Driessen [26] as a robust estimator of multivariate distribution. It 

was claimed to be very useful in outlier detection for being resistant to extreme 

observation and has been used in many domains such as image analysis, medicine 

and chemistry [28]. In an n sample size, the minimum determinant is calculated 

from the covariance matrix of subset of size h, where (h<n). The value h is 
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considered as the minimum number of samples which must not be treated as 

outlier. According to Hardin and Rocke [27] h is normally set to be higher than its 

highest possible breakdown which is, 

 

 , where p = number of dimension (2) 

  

Consequently, the mean and covariance from the subset having the lowest 

covariance determinant (most concentrated distribution) will be considered as 

robust distribution estimator, hence used in our Mahalanobis classifier. In our case, 

MCD estimator will replace the classical mean and covariance in the Mahalanobis 

distance formula with the robust mean (location estimate) and robust covariance 

matrix (scatter estimate) of samples subset that have a minimum covariance 

matrix determinant. 

 

 (3) 

 

Where, 

 (4) 

 

(5) 

 

(6) 

 

Therefore, Robust Mahalanobis Distance, RMD is formulated by, 

 
(7) 

 

From Eq. 4, the original MCD estimator is very difficult to compute, as it needs to 

evaluate all subset Q of size h. A more efficient algorithm, called Fast Minimum 

Covariance Determinant (FMCD) algorithm was introduced to solve the 

computation problem with C-step (concentration) as the key component [28].  The 

FMCD algorithm [26,28] is explained as follows : 

 

Consider dataset X and subset H1:   

 

 
(8) 

 

Compute mean and covariance matrix of subset H1: 

 

(9) 
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(10) 

 

If , define the relative distance, 

 
(11) 

 

Now take  such that  

 (12) 

 

Taken from the following ordered distances, 

 (13) 

 

Then, we shall compute and . After that, we compare the determinant, 

 (14) 

 

with equality if and only if and . If  , the C-

step yields a with lower determinant, thus is more concentrated than . 

C-step is then iterated until  or . MCD 

solution can be approximated by taking a few initial choices of H1 , applying C-

steps to each and finally keeping the lowest determinant as the solution. 

The initial subset, H1 is constructed by drawing a random subset J of size (p+1), 

subsequently computing  and . If  , J can be extended by adding 

another samples until . Then , compute and sort the distance, 

 (15) 

 

The initial H1 subset is then consists of h samples with smallest . This method is 

claimed to draw a better initial subsets with higher probability of outlier-free 

subsets than taking random subsets of size h [28].  

3.3 Overview of proposed method 

In an attempt to develop a timber defect detection method with species 

independent processing, we propose an unsupervised one class classifier (OCC) 

based on outlier detection concept using Mahalanobis distance which does not 

rely on training data. Apparently, it is not feasible to employ supervised detection 

method in the industry due to the difficulty in getting well sampled data 

representing various defect types for each timber species. Therefore, one class 

classification method is employed to overcome the problem of imbalanced data by 

representing the data with class having high frequency samples (clear wood), and 

treating the outliers deviating from the distribution average estimate as defects. 

We further propose an improvement over the Mahalanobis-based OCC by 

applying minimum covariance determinant (MCD) as a robust estimator to the 
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sample distribution. The MCD is computed using Fast-Minimum Covariance 

Determinant (FMCD) algorithm for faster convergence, ensuring fast detection of 

timber defect. We call the proposed classifier as Mahalanobian Classifier based on 

Robust FMCD (MC-FMCD). 

 

As shown in Fig. 2, timber surface images acquired using an optical sensor, were 

converted into greyscale and divided into non-overlapping rectangular regions of 

60 x 60 pixels. 15 statistical texture features based on the orientation independent 

Grey Level Dependence Matrix (GLDM) [29] were then extracted from each 

region to form a feature vector representing the regions for the whole timber. The 

FMCD algorithm was then employed where the mean and covariance of the 

distribution subset from the feature vector with minimum covariance determinant 

were used to represent the distribution centroid. Defects were then detected based 

on proximity measurement between each sample in the feature vector and the 

robust distribution centroid. The proximity measurement employed was based on 

robust Mahalanobis Distance, where a distance larger than the pre-set cut off 

value of a corresponding chi-square distribution would be treated as defect. All 

equations related to MC-FMCD can be referred to in Eq.7 to Eq. 15.  
 

Acquire Image from a piece of 
timber

Division of image into sub-images 
of 60x60 pixels

Convert image to greyscale

Extract statistcal features based 
on orientation independent GLDM 

for each sub-images

FMCD algorithm

Feature 
Vector

Samples subset 
with minimum 

covariance 
determinant

Calculate mean 
and covariance

Robust 
estimator

Proximity measurement 
(Mahalanobis distance) between 

feature values and robust 
estimator

If RMD > χ2 cutoff

Robust Mahalanobis Distance, RMD

Label=defect

Label=clear wood

Sub-images/samples

Timber surface image

Greyscale image

No

Yes

MC-FMCD

 

Fig. 2: Proposed MC-FMCD for robust timber defect detection 
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4 Experimental Results and Discussion 

4.1 Experimental setting 

In this study, we used the Malaysian timber defect database from the 

Computational Intelligence and Technologies Lab, Universiti Teknikal Malaysia 

Melaka [30]. The image database contains 8 types of natural defect commonly 

found on the surface of timber from four species which are Merbau, Rubberwood, 

KSK and Meranti. We constructed our experimental datasets by combining sub-

images of clear wood and defects from the database with defect ratio between 5-

25% to simulate the original timber length. The ratio was set based on suggestions 

from industry expert. Each dataset contained about 720 samples of 60 x 60 pixels 

to simulate a timber piece with a size of 10 feet x 4 inches (approximately 1200 x 

360 pixels). There were 45 datasets for each timber species with various 

combinations of clear wood and defects at various defect ratios. The alpha value 

for FMCD was set to 0.75, which means that 75% of the samples were used as the 

subset for finding the minimum covariance determinant. The chi-square cut-off 

value was set to 0.99, . 

4.2 Performance measurement indices 

4.2.1 Precision, recall and F measure to measure detection performance 

In this study, defect images contributed to lower number of samples compared to 

clear wood samples. This is not uncommon, especially in secondary wood 

industry where the rejection rate or percentage of raw material defect often ranges 

from 5% to 10%.  The sub images of collected samples were expected to be 

skewed where clear wood area is higher than defect area. Therefore, the number 

of positive samples (defect) is much smaller than the number of negative samples 

(clear wood). In this case, one useful evaluation metric is called precision/recall. 

For skewed classes, precision/recall gives us a more direct insight into how the 

learning algorithm is doing and often, is a much better way to evaluate our 

learning algorithm than looking at classification error and accuracy [31]. Precision 

and recall measures will give us a better sense on how well our classifier is doing 

[31]. Brownlee [32] agreed that in an imbalanced class situation, accuracy 

measure can be misleading because if a model is able to predict the majority class 

over all predictions, it can achieve high accuracy even if the minority class is not 

predicted well. Precision, recall and F measure are defined as follows: 

 

 

(16) 
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(17) 

 

 

(18) 

 

Precision and recall provides a complementary measure. We may want to have a 

balanced precision and recall depending on our problem domain. To produce a 

single performance measure on precision and recall, we used F measure 

[31,33,34].  F measure is a weighted harmonic mean of precision and recall [33]. 

It is a combined measure to evaluate the trade-off between precision and recall. 

The value of F measure ranges from 0 to 1 where 1 is considered to be a perfect 

score. F measure may also provide a reasonable rank ordering of different 

classifier or different parameters used in classification. For very skewed classes, a 

classifier with high precision and recall indicates that the classifier chosen is 

performing well [31]. 

4.2.2 Over detection and under detection errors 

Over detection and under detection errors are among the suggested measure to assess the 

quality of segmentation when manual reference exists [35]. Over detection error can 

be defined as over segmented area with regards to automated segmentation 

produced, while under detection error can be defined as under segmented area 

over an actual segmentation. As non-segmenting approach is employed in our 

work, errors are measured through the establishment of correspondence between 

manually labelled sub-images and predicted sub-images. This is equivalent to 

producing a confusion matrix where four measures are calculated as in Table 1. 

 

Table 1: Confusion matrix 

  Actual Class 

  Defect Clear Wood 

Predicted Class 
Defect True Positive (TP) False Positive (FP) 

Clear Wood False Negative (FN) True Negative (TN) 

 

Then, over detection (OD) and under detection (UD) errors are defined as: 
 

 

(19) 

 

 

(20) 
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OD can be defined as over detected defect (clear wood detected as defect), while 

UD can be defined as undetected defect (defect detected as clear wood). 

4.3 Experimental results  

In this section, we will present the experimental results to measure the detection 

performance of the proposed approach.  The results are presented in three 

dimensions with the first one being measured across timber species to evaluate the 

performance consistency of the proposed approach over multiple timber species. 

The second detection performance result is presented by defect types to identify 

the detection performance of each individual type of defects. This is followed by 

performance comparison between classic MD and robust MD to prove that the 

robust MD provides better defect detection due to its robustness in detecting 

outlier.  

4.3.1 Detection performance by timber species 

Fig. 3 summarizes the detection performance (average F score, average OD and UD 

error) of MC-FMCD over all timber species; Merbau, KSK, Meranti and Rubberwood. 

From Fig. 3, it is apparent that MC-FMCD performs satisfactorily well over 

multiple timber species with small OD and UD errors and an F score of about 0.8 

for all species. Additionally, OD error seems to be mostly higher than UD error 

across all species. Over detected defect samples are seen to contribute to most of 

the detection error compared to under detected samples. This confirms that despite 

minor confusion with clear wood, defects could still be detected well and the 

slight confusion with clear wood might be due to the variability in the clear wood 

appearance. 
 

 

Fig. 3: Average detection performance by timber species 
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4.3.2 Detection performance by defect types 

Further look into the performance summary as in Fig. 4 indicates a consistent 

performance over all defect types across multiple species with all defect types 

showing good performance except for blue stain which consistently performs 

poorly for all timber species.  
 

(a) F score comparison between timber species by defect types 

 

(b) Average F score by defect types 

 

Fig. 4: Average detection performance by defect types across timber species (a) F 

score comparison between timber species by defect types (b) Average F score by 

defect types 
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4.3.3 Detection performance between MC-FMCD and MD 

Lastly, Fig. 5 summarizes the detection performance comparison between MC-

FMCD and classic MD over multiple timber species and also the overall average 

performance. It can be observed that MC-FMCD performs better than classic MD 

consistently across timber species and on average. We also conducted paired 

samples T-Test to test the statistical significance of the performance improvement 

(average F score) between MC-FMCD and classic MD. As a result, there is a 

significant effect in detection performance, t(44)=8.29, p<0.001, with MC-FMCD 

(mean F score=0.81) performing significantly better than classic MD (mean F 

score =0.55).  
 

 

Fig. 5: Average detection performance between MC-FMCD and classic MD 

4.4 Discussion 

This paper highlights a number of important observations on the performance of 

the proposed detection approach using robust MC-FMCD. The proposed approach 

is found to perform acceptably well over simulated datasets containing various 

defect ratios over multiple defect types across multiple timber species. This 

suggests that MC-FMCD provides a workable solution towards unsupervised 

defect detection over imbalanced data with flexibility to be generalized to detect 

many types of defects regardless of timber species. However, blue stain is found 

to be the most difficult to be detected, similarly with other previous works on 

other timber species. This is due to the close similarity of texture characteristic 

between blue stain and clear wood which makes it not easily distinguishable. We 

anticipate that by adding extra informative features such as tonal features, the 
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detection performance for blue stain could be improved since the blue stain could 

be visually distinguished over clear wood by its bluish appearance.  

The experimental result shows that over detection error is mostly higher than 

under detection error suggesting that defects are mostly detectable despite minor 

confusion with clear wood. This indicates that the proposed approach combined 

with the statistical texture feature set provides an appropriate representation 

towards successful detection that can be generalized well enough for many types 

of defects. Nevertheless, for future research, we suggest further improvement on 

the detection procedures to reduce over detection error in order to avoid over 

rejected parts in future industrial application. 

The proposed MC-FMCD has also demonstrated superior detection accuracy 

compared to classic MD, and is proven by a statistically significant improvement 

in average F score over multiple timber species as well as in the average value. 

This suggests that the robust estimator provided by the FMCD algorithm works 

really well in improving the detection of outlier in the samples, thus increasing 

defect detection accuracy. 

5 Conclusion 

This paper discusses the proposed timber defect detection using MC-

FMCD and the evaluation of the approach on simulated dataset. Experiments are 

first conducted on simulated datasets with multiple imbalance ratios covering all 

defect types either individually or combined. Results from the experiments 

demonstrate that MC-FMCD which is based on robust estimator derived from 

FMCD is useful in contributing to acceptable defect detection accuracy over all 

defect types (except for blue stain) and consistently across multiple timber species. 

The poor performance on detecting blue stain is due to blue stain having close 

similarity of texture characteristics with clear wood. Additionally, MC-FMCD 

performs significantly better than classic MD in detecting defects.  
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